

Alpha Bridge AQSFP28-100G-eLR4 Datasheet



#### **Features**

- Hot pluggable QSFP28 MSA form factor
- Compliant to IEEE 802.3ba 100GBASE-LR4
- Digital diagnostic monitoring support
- Hot pluggable 38-pin electrical interface
- Transmitter cooled 4x25Gb/s LAN WDM DFB TOSA (1295.56, 1300.05,1304.58, 1309.14nm)
- Receiver 4x25G PIN ROSA
- Maximum power consumption 4W
- LC duplex connector
- Supports 103.1Gb/s bit rate
- Up to 20km reach for G.652 SMF
- Commercial case temperature range of 0°C to 70°C
- Single 3.3V power supply
- RoHS-6 compliant

### **Application**

- 100GBASE-LR4 Ethernet Links
- Infiniband QDR and DDR interconnects
- Datacenter and Enterprise networking

# **Description**

This product is a 100Gb/s transceiver module designed for optical communication applications compliant with 100GBASE-LR of the IEEE 802.3ba standard. The module converts 4 input channels of 25Gb/s electrical data to 4 channels of LAN WDM optical signals and then multiplexes them into a single channel for 100Gb/s optical transmission. Reversely on the receiver side, the module demultiplexes a 100Gb/s optical input into 4 channels of LAN WDM optical signals and then converts them to 4 outputs of electrical data.

The central wavelengths of the 4 LAN WDM channels are 1295.56, 1300.05, 1304.58, and 1309.14 nm, members of the LAN WDM wavelength grid defined in IEEE 802.3ba. The high-performance cooled LAN WDM DFB transmitters and high-sensitivity PIN receivers provide superior performance for 100Gigabit Ethernet applications up to 20km links and are compliant with the optical interface with 100GBASE-LR4 requirements specified in IEEE 802.3ba Clause 88.

**Absolute Maximum Ratings** 

| Parameter                    | Symbol | Min. | Тур. | Max. | Units | Note |
|------------------------------|--------|------|------|------|-------|------|
| Storage Temperature          | Ts     | -40  |      | 85   | °C    |      |
| Operating Case Temperature   | Тор    | 0    |      | 70   | °C    |      |
| Maximum Supply Voltage       | Vcc    | -0.5 |      | 3.6  | V     |      |
| Relative Humidity            | RH     | 0    |      | 85   | %     |      |
| Damaged Threshold, each Lane | THd    | 5.5  |      |      | dBm   |      |

**Recommended Operating Conditions** 

| Parameter                  | Symbol | Min.  | Тур.     | Max.  | Units | Note |
|----------------------------|--------|-------|----------|-------|-------|------|
| Supply Voltage             | Vcc    | 3.135 | 3.3      | 3.465 | V     |      |
| Case Temperature           | Тор    | 0     |          | 70    | °C    |      |
| Data Rate, each lane       |        |       | 25.78125 |       | Gb/s  |      |
| Data Rate Accuracy         |        | -100  |          | 100   | ppm   |      |
| Control Input Voltage-High |        | 2     |          | Vcc   | V     |      |
| Control Input Voltage-Low  |        | 0     |          | 0.8   | V     |      |
| Link Distance with G.652   | D      | 0.002 |          | 20    | km    |      |

## Notes:

- 1. FEC feature is embedded in the module.
- 2. FEC required to be turned on to support maximum transmission distance.



**Diagnostics Monitoring** 

| Parameter                               | Symbol       | Accuracy | Unit | Notes |
|-----------------------------------------|--------------|----------|------|-------|
| Temperature monitor absolute error      | DMI_Temp     | ± 3      | °C   |       |
| Supply voltage monitor absolute error   | DMI_VCC      | ± 0.1    | V    |       |
| Channel RX power monitor absolute error | DMI_RX_Ch    | ± 2      | dB   | 1     |
| Channel Bias current monitor            | DMI_Ibias_Ch | ± 10%    | mA   |       |
| Channel TX power monitor absolute error | DMI_TX_Ch    | ± 2      | dB   | 1     |

# Notes:

1. Due to the measurement accuracy of different single-mode fibers, there could be an additional +/-1 dB fluctuation or a +/- 3 dB total accuracy.

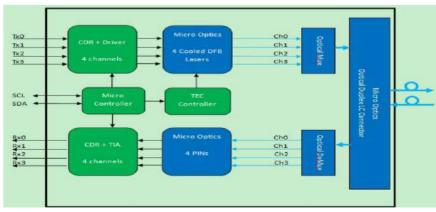
**Optical Characteristics** 

| Parameter                                                               | Symbol           | Min.             | Тур.          | Max.    | Units | Note     |
|-------------------------------------------------------------------------|------------------|------------------|---------------|---------|-------|----------|
| Transmit wavalangths                                                    | LO               | 1294.53          | 1295.56       | 1296.59 | nm    |          |
|                                                                         | L1               | 1299.02          | 1300.05       | 1301.09 | nm    |          |
| Transmit wavelengths                                                    | L2               | 1303.54          | 1304.58       | 1305.63 | nm    |          |
|                                                                         | L3               | 1308.09          | 1309.14       | 1310.19 | nm    |          |
|                                                                         | Transmitte       | r (each Lane)    |               |         |       |          |
| Side Mode Suppression Ration                                            | SMSR             | 30               |               |         | dB    |          |
| Total Average Launch Power                                              | Pτ               |                  |               | 10.5    | dBm   |          |
| Average Launch Power, each lane                                         | P <sub>AVG</sub> | 0                |               | 4.5     | dBm   |          |
| OMA, each lane                                                          | Рома             | 0.5              |               | 4.5     | dBm   | 1        |
| Launch Power in OMA minus Transmitter and                               |                  | -2.3             |               |         | dBm   |          |
| Dispersion Penalty (TDP), each lane                                     |                  | 2.5              |               |         | аып   |          |
| TDP, each lane                                                          | TDP              |                  | 2.2           |         | dB    |          |
| Extinction Ratio                                                        | ER               | 4                |               |         | dB    |          |
| Difference in Launch Power between any Two Lances (OMA) <i>Ptx,diff</i> |                  |                  |               | 5       | dB    |          |
| RIN20OMA RIN                                                            |                  |                  |               | -130    | dB/Hz |          |
| Optical Return Loss Tolerance TOL                                       |                  |                  |               | 20      | dB    |          |
| Transmitter Reflectance RT                                              |                  |                  |               | -12     | dB    |          |
| Average Launch Power OFF Transmitter, each lane <i>Poff</i>             |                  |                  |               | -30     | dBm   |          |
| Eye Mask (X1,X2,X3,Y1,Y2,Y3)                                            | {0.              | 25,0.4,0.45,0.2  | 25,0.28,0.4}  | 1       |       | 2        |
|                                                                         | Re               | ceiver           |               |         |       | <u>'</u> |
| Damage Threshold, each lane                                             | THd              | 5.5              |               |         | dBm   | 3        |
| Average Receiver Power, each lane                                       |                  | -12.6            | 4.5           |         | dBm   |          |
| Receiver Power (OMA), each lane                                         |                  |                  | 4.5           |         | dBm   |          |
| Receiver Sensitivity (OMA), each lane                                   | SEN              |                  | -8.6          |         | dBm   |          |
| Stressed Receiver Sensitivity (OMA),each lane                           |                  |                  | -6.8          |         | dBm   | 4        |
| Receiver Reflectance                                                    | RR               |                  | -26           |         | dB    |          |
| Difference in Receiver Power                                            |                  |                  |               |         |       |          |
| between any Two Lanes (OMA)                                             | Prx,diff         |                  | 5.5           |         | dB    |          |
| LOS Assert                                                              | LOSA             | -30              |               |         | dBm   |          |
| LOS Deassert                                                            | LOSD             |                  |               | -13     | dBm   |          |
| LOS Hysteresis                                                          | LOSH             | 0.5              |               |         | dB    |          |
| Receiver Electrical 3 dB upper Cutoff                                   |                  |                  |               |         |       |          |
| Frequency, each lane                                                    | Fc               |                  |               | 31      | GHz   |          |
| Condition                                                               | s of Stress Rece | iver Sensitivity | Test (Note 5) |         |       |          |
| Vertical Eye Closure Penalty, each lane                                 |                  |                  | 1.8           |         | dB    |          |
| Stressed Eye J2 Jitter, each lane                                       |                  |                  | 0.3           |         | UI    |          |
| Stressed Eye J9 Jitter, each lane                                       |                  |                  | 0.47          |         | UI    |          |



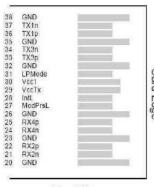
#### Notes

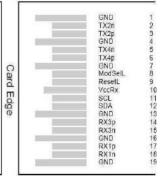
- 1. Even if the TDP< 1 dB, the OMA min must exceed the minimum value specified here.
- 2. Hit ratio 5x10<sup>-5</sup>
- 3. The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power.
- 4. Measured with conformance test signal at receiver input for BER=1x10-12
- 5. Vertical eye closure penalty, stressed eye J2 jitter and stressed eye J9 jitter are test conditions for measuring stressed receiver sensitivity. They are not characteristics of the receiver.


### **Electrical Characteristics**

| Parameter                                          | Symbol    | Min.                                 | Тур. | Max. | Units | Note    |  |
|----------------------------------------------------|-----------|--------------------------------------|------|------|-------|---------|--|
| Power Consumption                                  |           |                                      |      | 4    | W     |         |  |
| Supply Current                                     | Icc       |                                      |      | 1.21 | Α     |         |  |
|                                                    | Transmitt | ter (each Lane)                      |      |      |       |         |  |
| Overload Differential Voltage pk-pk                | TP1a      | 900                                  |      |      | mV    |         |  |
| Common Mode Voltage (Vcm)                          | TP1       | -350                                 |      | 2850 | mV    | 1       |  |
| Differential Termination Resistance Mismatch       | TP1       |                                      |      | 10   | %     | At 1MHz |  |
| Differential Return Loss (SDD11)                   | TP1       | See CEI-28G-VSR Equation 13-19       |      | dB   |       |         |  |
| Common Mode to Differential conversion and         |           |                                      |      |      |       |         |  |
| Differential to Common Mode conversion             |           |                                      |      |      |       |         |  |
| (SDC11, SCD11)                                     | TP1       | See CEI-28G-VSR Equation 13-20       |      |      | dB    |         |  |
| Stressed Input Test                                | TP1a      | See CEI- 28G-VSR Section 13.3.11.2.1 |      |      |       |         |  |
| Receiver (each Lane)                               |           |                                      |      |      |       |         |  |
| Differential Voltage pk-pk                         | TP4       |                                      |      | 900  | mV    |         |  |
| Common Mode Voltage (Vcm)                          | TP4       | -350                                 |      | 2850 | mV    | 1       |  |
| Common Mode Noise, RMS                             | TP4       |                                      |      | 17.5 | mV    |         |  |
| Differential Termination Resistance Mismatch       | TP4       |                                      |      | 10   | %     | At 1MHz |  |
| Differential Return Loss (SDD22)                   | TP4       | See CEI- 28GVSR Equation13-21        |      |      |       |         |  |
| Common Mode to Differential conversion and         |           |                                      |      |      |       |         |  |
| Differential to Common Mode conversion             | TP4       | See CEI-28G-VSR Equation 13-21       |      |      |       |         |  |
| (SDC22, SCD22)                                     |           | dB                                   |      |      |       |         |  |
| Common Mode Return Loss (SCC22)                    | TP4       |                                      |      | -2   | dB    | 2       |  |
| Transition Time, 20 to 80%                         | TP4       | 9.5                                  |      |      |       |         |  |
| ps Vertical Eye Closure (VEC)                      | TP4       |                                      | 5.5  | _    | dB    |         |  |
| Eye Width at 10 <sup>-15</sup> probability (EW15)  | TP4       | 0.57                                 |      | _    | UI    |         |  |
| Eye Height at 10 <sup>-15</sup> probability (EH15) | TP4       | 228                                  |      | _    | mV    |         |  |

#### **Notes:**


- 1. Vcm is generated by the host. Specification includes effects of ground offset voltage.
- 2. From 250MHz to 30GHz.


# **Block Diagram of Transceiver**





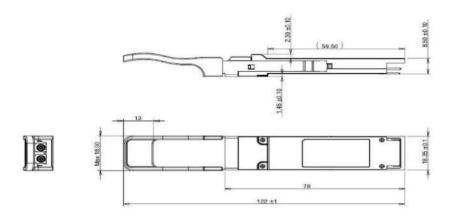
# **Pin Assignment (MSA compliant connector)**





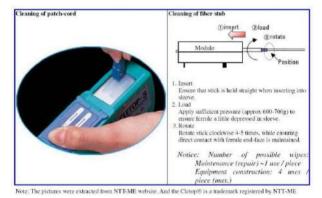
Top Side Viewed from Top

Bottom Side Viewed from Bottom


# **Pin Descriptions**

| ons |         |                                      |          |
|-----|---------|--------------------------------------|----------|
| Pin | Symbol  | Name/Description                     | Notes    |
| 1   | GND     | Transmitter Ground                   | 1        |
| 2   | Tx2n    | Transmitter Inverted Data Input      |          |
| 3   | Tx2p    | Transmitter Non-Inverted Data output |          |
| 4   | GND     | Transmitter Ground                   | 1        |
| 5   | Tx4n    | Transmitter Inverted Data Input      |          |
| 6   | Tx4p    | Transmitter Non-Inverted Data output |          |
| 7   | GND     | Transmitter Ground                   | 1        |
| 8   | ModSelL | Module Select                        |          |
| 9   | ResetL  | Module Reset                         |          |
| 10  | VccRx   | 3.3V Power Supply Receiver           | 2        |
| 11  | SCL     | 2-Wire serial Interface Clock        |          |
| 12  | SDA     | 2-Wire serial Interface Data         |          |
| 13  | GND     | Receiver Ground                      | 1        |
| 14  | Rx3p    | Receiver Non-Inverted Data Output    |          |
| 15  | Rx3n    | Receiver Inverted Data Output        |          |
| 16  | GND     | Receiver Ground                      | 1        |
| 17  | Rx1p    | Receiver Non-Inverted Data Output    |          |
| 18  | Rx1n    | Receiver Inverted Data Output        |          |
| 19  | GND     | Receiver Ground                      | 1        |
| 20  | GND     | Receiver Ground                      | 1        |
| 21  | Rx2n    | Receiver Inverted Data Output        |          |
| 22  | Rx2p    | Receiver Non-Inverted Data Output    |          |
| 23  | GND     | Receiver Ground                      | 1        |
| 24  | Rx4n    | Receiver Inverted Data Output        |          |
| 25  | Rx4p    | Receiver Non-Inverted Data Output    |          |
| 26  | GND     | Receiver Ground                      | 1        |
| 27  | ModPrsl | Module Present                       |          |
| 28  | IntL    | Interrupt                            |          |
| 29  | VccTx   | 3.3V power supply transmitter        | 2        |
| 30  | Vcc1    | 3.3V power supply                    | 2        |
| 31  | LPMode  | Low Power Mode, not connect          |          |
| 32  | GND     | Transmitter Ground                   | 1        |
| 33  | ТхЗр    | Transmitter Non-Inverted Data Input  |          |
| 34  | Tx3n    | Transmitter Inverted Data Output     |          |
| 35  | GND     | Transmitter Ground                   | 1        |
| 36  | Tx1p    | Transmitter Non-Inverted Data Input  | <u> </u> |
| 37  | Tx1n    | Transmitter Inverted Data Output     |          |
| 38  | GND     | Transmitter Ground                   | 1        |




- 1. GND is the symbol for signal and supply (power) common for the QSFP28 module. All are common within the module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground plane.
- 2. VccRx, Vcc1 and VccTx are the receiving and transmission power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown in Figure 3 below. Vcc Rx, Vcc1 and Vcc Tx may be internally connected within the module in any combination. The connector pins are each rated for a maximum current of 1000mA.

#### **Dimensions**



# **Optical Receptacle Cleaning Recommendations:**

All fiber stubs inside the receptacle portions were cleaned before shipment. In the event of contamination of the optical ports, the recommended cleaning process is the use of forced nitrogen. If contamination is thought to have remained, the optical ports can be cleaned using an NTT international Cletop® stick type and HFE7100 cleaning fluid. Before the mating of the patch-cord, the fiber end should becleaned up by using a Cletop® cleaning cassette.



#### **Ordering information:**

| Model Number      | Part Number      | Voltage | Temperature  |
|-------------------|------------------|---------|--------------|
| AQSFP28-100G-eLR4 | OPCW-S20 -13-CBD | 3.3V    | 0°C to 70 °C |

Note: All information contained in this document is subject to change without notice.

