

Alpha Bridge AQSFP28-100G-LR1 Datasheet

Features

- QSFP28 MSA-compliant
- Support 53.125Gbaud
- 100G Lambda MSA 100G-LR Specification compliant
- Up to 10km transmission on single mode fiber(SMF) with FEC
- Operating case temperature: 0 to 70°C
- 4x25G electrical interface (OIF CEI-28G-VSR)
- Maximum power consumption 4W
- LC duplex connector
- RoHS compliant

Application

- Data Center Interconnect
- 100G Ethernet
- Enterprise networking

Description

This product is a transceiver module designed for 10km optical communication applications. The module incorporates one channel optical signal, on 1310nm center wavelength, operating at 50Gbaud data rate. The transmitter path incorporates an EML Driver integrated in the DSP and a cooled EML together. On the receiverpath, the input optical signal is coupled to a Pin photodiode detector. A DSP based gearbox is used to convert 4x25Gbps NRZ signals to 1x50Gbaud PAM4 signal. Also a 4-channel retimer and FEC block are integrated in this DSP. The electrical interface is compliant with IEEE 802.3cd and QSFP28 MSA in the transmitting and receiving directions, and optical interface is compliant to IEEE 802.3cd and 100G Lambda MSA with Duplex LCconnector. The module has a maximum power consumption of 4.0W. The product is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP28 Multi-Source Agreement (MSA). It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Units	Note
Storage Temperature	Ts	-40	85	°C		
Operating Case Temperature	ТОР	0	70	°C		
Supply Voltage	VCC	-0.5	3.6	V		
Relative Humidity (non-condensation)	RH	0	85	%		

Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Units	Note
Operating Case Temperature	TOP	0		70	°C	
Power Supply Voltage	Vcc	3.135	3.3	3.465	V	
Data Rate, each Lane			25.78125		Gb/s	
Optical Data Rate (PAM4)			53.125		GBd	
Data Rate Accuracy		-100		100	Ppm	
Pre-FEC Bit Error Ratio				2.4x10-4		
Post-FEC Bit Error Ratio				1x10-12		1
Control Input Voltage High		2		Vcc	V	
Control Input Voltage Low		0		0.8	V	
Link Distance with G.652	D	0.002		10	Km	2

Notes:

- 1. FEC feature is embedded in the module.
- 2. FEC required to be turned on to support maximum transmission distance.

Diagnostics Monitoring

Parameter	Symbol	Accuracy	Unit	Notes
Temperature monitor absolute error	DMI_Temp	± 3	°C	Over operating temperature range
Supply voltage monitor absolute error	DMI_VCC	± 0.1	V	Over full operating range
RX power monitor absolute error	DMI_RX_Ch	± 2	dB	1
Bias Current Monitor	DMI_Ibias_Ch	± 10%	mA	
TX power monitor absolute error	DMI_TX_Ch	± 2	dB	1

Notes:

1. Due to measurement accuracy of different single mode fibers, there could be an additional +/-1 dB fluctuation, or a +/- 3 dB total accuracy.

Transmitter Electro-optical Characteristics (Each Lane)

Parameter	Test Point	Min	Тур.	Max	Units	Notes
Power Consumption				4.5	W	
Supply Current	Icc			1.21	А	
Overload Differential Voltage pk-pk	TP1a	900			mV	
Common Mode Voltage (Vcm)	TP1	-350		2850	mV	1
Differential Termination Resistance Mismatch	TP1			10	%	At 1MHz
Differential Return Loss (SDD11)	TP1	See CEI-28	3G- VSR Equ	uation 13-19	dB	
Common Mode to Differential conversion and Differential to Common Mode conversion (SDC11, SCD11)	TP1	See CEI-2	28G-VSR Equ	ation 13-20	dB	
Stressed Input Test	TP1a	See CEI- 28	G-VSR Sectio	on 13.3.11.2.1		
Center Wavelength	λt	1304.5		1317.5	nm	
Side Mode Suppression Ratio	SMSR	30			dB	
Average Launch Power	P _{AVG}	-2.4		4.5	dBm	3
Outer Optical Modulation Amplitude (OMAouter)	Рома	0.7	4.7	4.2	dBm	4
Launch Power in OMA minus TDECQ For ER		-0.7			dBm	
≥4.5dB For ER <4.5dB		-0.6				
Transmitter and Dispersion Eye	TDECQ			3.4	dB	
Cloure for PAM4 (TDECQ)						
TDECQ-10*log10 (Ceq)				3.4	dB	5
Extinction Ratio	ER	3.5			dB	
RIN17.1 OMA	RIN			-136	dB/Hz	
Optical Return Loss Tolerance	TOL			15.6	dB	
Transmitter Reflectance	R T			-26	dB	

Transmitter Transition Time			17	ps	
Average Launch Power OFF Transmitter, each Lane	Poff		-15	dBm	

Electrical Characteristics

Parameter	Test Point	Min	Тур.	Max	Units	Notes
Differential Voltage, pk-pk	TP4			900	mV	
Common Mode Voltage (Vcm)	TP4	-350		2850	mV	1
Common Mode Noise, RMS	TP4			17.5	mV	
Differential Termination Resistance Mismatch	TP4			10	%	At 1MHZ
Differential Return Loss (SDD22)	TP4	See CI	EI-28G-VSR E	quation 13-19	dB	
Common Mode to Differential Conversion and Differential to Common Mode Conversion (SDC22, SCD22)	TP4	See CEI-28G-VSR Equation 13-21				
Transition Time, 20% to 80%	TP4	9.5			ps	
Common Mode Return Loss	TP4			-2	dB	2
(SCC22)						
Vertical Eye Closure (VEC)	TP4			5.5	dB	
Eye Width at 10-15 probability (EW15)	TP4	0.57			UI	
Eye Height at 10-15 probability (EH15)	TP4	228			mV	
Center Wavelength	Λr	1304.5		1317.5	nm	
Damage Threshold	THa	5.5			dBm	6
Average Receive Power		-7.7		4.5	dBm	7
Receive Power (OMA _{outer})				4.7	dBm	
Receiver Sensitivity (OMA _{outer})	SEN			Equation (1)	dBm	8
Stressed Receiver Sensitivity (OMAouter)	SRS			-4.1	dBm	9
Receiver Reflectance	RR			-26	dB	
LOS Assert	LOSA	-15			dBm	
LOS Deassert	LOSD			-10.7	dBm	
LOS Hysteresis	LOSH	0.5			dB	
	ditions of St	ress Rece	eiver Sens	sitivity Test		
Stressed Eye Clousre for PAM4 (SECQ)			3.4		dB	10
SECQ-10*log10(Ceq)				3.4	dB	10

Notes:

- 1. Vcm is generated by the host. Specification includes effects of ground offset voltage.
- 2. From 250MHz to 30GHz.
- 3. Average launch power, each lane min is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does notensure compliance.
- 4. Even if the TDECQ < 1.4dB for an extinction ratio of ≥ 4.5dB or TDECQ < 1.3dB for an extinction ratio of <4.5dB, the OMAouter (min) must exceed the minimum value specified here.
- 5. Ceq is a coefficient defined in IEEE Std 802.3-2018 clause 121.8.5.3 which accounts for reference equalizer noise

enhancement.

- 6. Average receive power (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 7. The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical inputsignal having this power level on one lane. The receiver does not have to operate correctly at this input power.
- 8. Receiver sensitivity (OMAouter) (max) is informative and is defined for a transmitter with a value of SECQup to 3.4 dB. It should meet Equation as following, which is illustrated in Figure 1.

$$RS = \max(-6.1, SECQ - 7.5) dBm$$

- 9. Measured with conformance test signal at TP3for the BER equal to 2.4x10-4.
- 10. These test conditions are for measuring stressed receiver sensitivity. They are not characteristics of thereceiver.

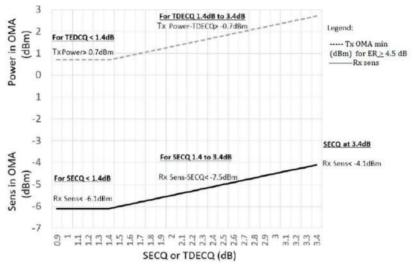
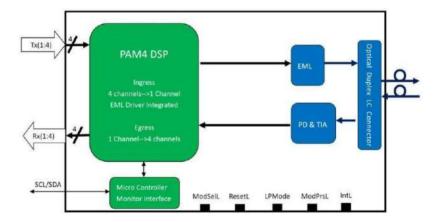



Figure 1. Illustration of receiver sensitivity mask for 100F-LR

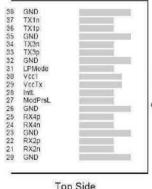
Block Diagram of Transceiver

This product converts the 4-channel of 100Gbps aggregated NRZ electrical input data into one channel of 50Gbaud PAM4 optical signal (light) on 1310nm center wavelength through a DSP based gearbox, by a driven cooled Electro-absorption Modulated DFB Laser (EML). The light propagates out of the transmitter into an SMFfiber. The receiver module accepts the 50Gbaud PAM4 optical signal input, and converts it into a 50Gbaud PAM4 electrical signal via a linear amplifier. And then convert the 50Gbaud PAM4 signal into 4 channels of 25Gbps NRZ signals. Figure 1 shows the functional block diagram of this product.

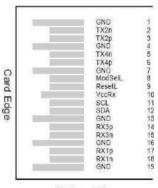
A single +3.3V power supply is required to power up this product. Both power supply pins VccTx and VccRx are internally connected and should be applied concurrently. As per MSA specifications the module offers seven low speed hardware control pins (including the 2-wire

serial interface): ModSelL, SCL, SDA, ResetL, LPMode, ModPrsL and IntL.

Module Select (ModSelL) is an input pin. When held low by the host, this product responds to 2-wire serial communication commands. The ModSelL allows the use of this product on a single 2-wire interface bus – individual ModSelL lines must be used.


Serial Clock (SCL) and Serial Data (SDA) are required for the 2-wire serial bus communication interfaceand enable the host to access the memory map.

The ResetL pin enables a complete reset, returning the settings to their default state, when a low level on the ResetL pin is held for longer than the minimum pulse length. During the execution of a reset the host shall disregard all status bits until it indicates a completion of the reset interrupt. The product indicates this by postingan IntL (Interrupt) signal with the Data_Not_Ready bit negated in the memory map. Note that on power up (including hot insertion) the module should post this completion of reset interrupt without requiring a reset.


Low Power Mode (LPMode) pin is used to set the maximum power consumption for the product in order to protect hosts that are not capable of cooling higher power modules, should such modules be accidentally inserted. Module Present (ModPrsL) is a signal local to the host board which, in the absence of a product, is normally pulled up to the host Vcc. When the product is inserted into the connector, it completes the path to ground through a resistor on the host board and asserts the signal. ModPrsL then indicates its present by setting ModPrsL to a "Low" state.

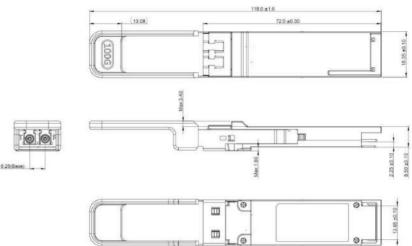
Interrupt (IntL) is an output pin. "Low" indicates a possible operational fault or a status critical to the host system. The host identifies the source of the interrupt using the 2-wire serial interface. The IntL pin is an open collector output and must be pulled to the Host Vcc voltage on the Host board.

Pin Assignment (MSA compliant connector)

Bottom Side Viewed from Bottom

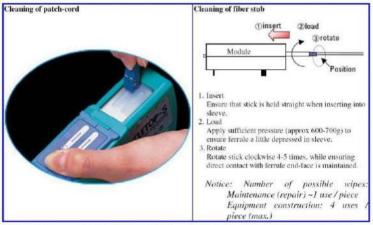
Pin Descriptions

PIN	Logic	Symbol	Name/Description	Note
1		GND	Ground	1
2	CML-I	Tx2n Transmitter Inverted Data Input		
3	CML-I	Tx2p	Transmitter Non-Inverted Data output	
4		GND	Ground	1
5	CML-I	Tx4n	Transmitter inverted Data Input	
6	CML-I	Tx4p	Transmitter Non-Inverted Data output	
7		GND	Ground	1
8	LVTLL-I	ModSeIL	Module Select	
9	LVTLL-I	ResetL	Module Reset	
10		VccRx	+3.3V Power Supply Receiver	2



11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock	
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data	
13		GND	Ground	
14	CML-O	Rx3p	Receiver Non-Inverted Data output	
15	CML-O	Rx3n	Receiver Inverted Data output	
16		GND	Ground	1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	
18	CML-O	Rx1n	Receiver Inverted Data Output	
19		GND	Ground	1
20		GND	Ground	1
21	CML-O	Rx2n	Receiver Inverted Data output	
22	CML-O	Rx2p	Receiver Non-Inverted Data output	
23		GND	Ground	1
24	CML-O	Rx4n	Receiver Inverted Data output	1
25	CML-O	Rx4p	Receiver Non-Inverted Data output	
26		GND	Ground	1
27	LVTTL-O	ModPrsL	Module Present	
28	LVTTL-O	IntL	Interrupt	
29		VccTx	+3.3V Power Supply transmitter	2
30		Vcc1	+3.3V Power Supply	2
31	LVTTL-I	LPMode	Low Power Mode	
32		GND	Ground	1
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input	
34	CML-I	Tx3n	Transmitter Inverted Data Output	
35		GND	Ground	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	
37	CML-I	Tx1n	Transmitter Inverted Data Output	
38		GND	Ground	1

Note:


- 1. GND is the symbol for signal and supply (power) common for QSFP28 modules. All are common within theQSFP28 module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground plane.
- 2. VccRx, Vcc1 and VccTx are the receiving and transmission power suppliers and shall be applied concurrently. Vcc Rx, Vcc1 and Vcc Tx may be internally connected within the QSFP28 transceiver modulein any combination. The connector pins are each rated for a maximum current of 1000mA.

Optical Receptacle Cleaning Recommendations:

All fiber stubs inside the receptacle portions were cleaned before shipment. In the event of contamination of the optical ports, the recommended cleaning process is the use of forced nitrogen. If contamination is thought to have remained, the optical ports can be cleaned using a NTT international Cletop® stick type and HFE7100 cleaning fluid. Before the mating of patch-cord, the fiber end should be cleaned up by using Cletop® cleaning cassette.

Note: The pictures were extracted from NTT-ME website. And the Cletop® is a trademark registered by NTT-ME

Ordering information:

Model Number	Part Number	Voltage	Temperature
AQSFP28-100G-LR1	OPCW-S10-13-CB1	3.3V	0°C to 70 °C

Note: All information contained in this document is subject to change without notice.

Copyright @ Alpha Bridge Technologies Private Limited

This document is ABTPL Public Information. ABTPL reserves the right to alter, update and otherwise change the information contained in the document from time to time. www.alphabridge.tech

