

Alpha Bridge AXFP-10G-SR Datasheet

AXFP-10G-SR DATASHEET

Features

- Compliant with XFP-MSA INF-8077i
- Compliant with 10GFC 1200-MX-SN-I Fiber Channel Standard
- Compliant with IEEE802.3ae 10GBASE-SW/SR Ethernet Standard
- Differential CML inputs and CML outputs
- Single power supply 3.3V
- TTL signal detect indicator
- Hot Pluggable
- Class 1 laser product complies with EN 60825-1
- RoHS Compliant

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Units	Note
Storage Temperature	Ts	-40	85	°C	
Supply Voltage	Vcc3	-0.5	4.0	V	
Input Voltage	V _{IN}	-0.5	Vcc	V	

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Note
Case Operating Temperature	T _C	-10	70	°C	
Supply Voltage	Vcc3	3.1	3.5	V	
Supply Current	Icc3		400	mA	

Diagnostics

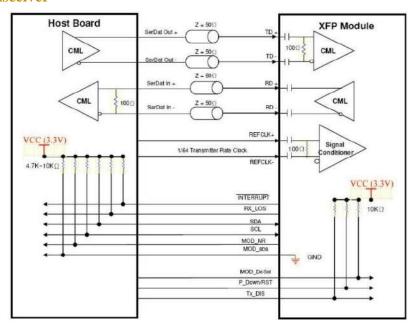
Data Address	Parameter Range		Accuracy
96-97	Temperature	-10 °C to 85 °C	±3°C
100-101	Bias Current	0 to 100mA	±10%
102-103	TX Power	-8 to +0dBm	±2dB
104-105	RX Power	-15 to +0dBm	±2dB
106-107	Vcc3 Voltage	2.9~3.7 Volts	±3%

Transmitter Electro-optical Characteristics

Vcc=3.1 V to 3.5 V, Tc= -10°C to 70°C (-10°C to 85°C)

Parameter	Symbol	Min.	Туре.	Max.	Units	Note
Operating Date Rate	Зуппоот	9.95	турс.	11.3	Gbps	Note
		9.93		+	Gups	
Input Reference Clock Rate	_			Not required	1-	
Output Optical Power	Pout	-7.1		-1	dBm	
(50/125μm fiber, NA=0.20)						
(62.5/125μm fiber NA=0.275)						
Optical Modulation Amplitude					dBm	Refer to IEEE
(OMA)	OMA					802.3ae Table 52-3
Extinction Ratio	ER	3			dB	
Center Wavelength	λς	840		860	nm	
Spectral Width (RMS)	Δλ				nm	Refer to IEEE
						802.3ae Table 52-8
Transmitter and Dispersion	TDP			3.9	dB	
Penalty						
Relative Intensity Noise	RIN			-128	dB/Hz	
Output Eye	Compliant with					
	IEEE802.3ae					
Differential Input Voltage	VDIFF	0.25		1.0	V	
TX_DISABLE Assert Time	t_off			10	μs	
TX_DISABLE Negate Time	t_on			2	ms	
Time to initialize	t_init			300	ms	
Interrupt negate delay	Interrupt_off			500	ms	
P_Down/RST assert delay	P_Down/RST_on			100	ms	

AXFP-10G-SR DATASHEET


Mod_NR assert delay	Mod_nr_on		1	ms	
Mod_NR negate delay	Mod_nr_off		1	ms	
P-Down reset time		10		μs	
RX_LOS assert delay	t_loss_on		100	μs	
RX_LOS negate delay	t_loss_off		100	μs	

Receiver Electro-optical Characteristics

Vcc=3.1 V to 3.5 V, Tc= -10°C to 70°C (-10°C to 85°C)

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Optical Input Power-maximum	PIN	-1			dBm	BER < 10 ^{□12}
Receiver Sensitivity	PIN			-9.9	dBm	BER < 10 ^{№12}
Receiver Sensitivity in OMA	PIN			-11.1	dBm	BER < 10 ^{№12}
Stress Receiver Sensitivity in OMA	PIN			-7.5	dBm	BER < 10 ¹² 12
Operating Center Wavelength	? c	840		860	nm	
Optical Return Loss	ORL	12			dB	
Loss of Signal-Asserted	PA			-20	dBm	
Loss of Signal-Deasserted	P _D	-12			dBm	
Differential Output Voltage	VDIFF	0.575		0.725	V	
TTL Input High Voltage		2		Vcc	V	
TTL Input Low Voltage		0		0.8	V	
TTL output High Voltage		2.4		Vcc	V	
TTL output Low Voltage		0		0.4	V	
Receiver Loss of Signal Assert Time (off	tA,RX LOS			100	μs	
to on)	_					
Recover Loss of Signal Assert Time (on to off)	tD,RX_LOS			100	μs	
I2C Clock Frequency	fSCL			400	kHz	

Block Diagram of Transceiver

This product converts the 4-channel of 100Gbps aggregated NRZ electrical input data into one channel of 50Gbaud PAM4 optical signal (light) on 1310nm center wavelength through a DSP based gearbox, by a driven cooled Electro-absorption Modulated DFB Laser (EML). The light propagates out of the transmitter into an SMF fiber. The receiver module accepts the 50Gbaud PAM4 optical signal input, and converts it into a 50Gbaud PAM4 electrical signal via a linear amplifier. And then convert the 50Gbaud PAM4 signal

into 4 channels of 25Gbps NRZ signals. Above figure shows the functional block diagram of this product.

MOD NR

The Mod_NR is an output pin that when High, indicates that the module has detected a condition that renders transmitter and or receiver data invalid, shall consist of logical OR of the following signals:

- Transmit Signal Conditioner Loss of Lock
- Transmitter Laser Fault
- Receiver Signal Conditioner Loss of Lock

MOD DESEL

The Mod_DeSel is an input pin. When held Low by the host, the module responds to 2-wire serial communication commands. The Mod_DeSel allows the use of multiple XFP modules on a single 2-wire interface bus. When the Mod_DesSel pin is "High", the module shall not respond to or acknowledge any 2-wire interface communication from the host.

INTERRUPT

Interrupt is an output pin. When "Low", indicates possible module operational fault or a status critical to the host system.

TX DIS

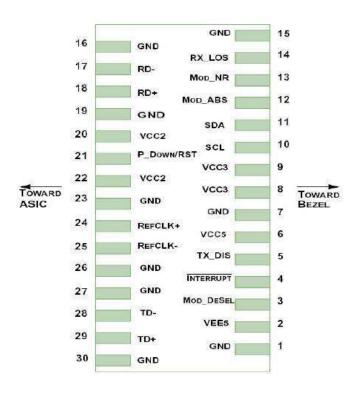
TX_DIS is an input pin. When TX_DIS is asserted High, the XFP module transmitter output must be turned off.

MOD ABS

Mod_ABS is pulled up to Host_Vcc on the host board and grounded in the XFP module. Mod_ABS is then asserted "High" when the XFP module is physically absent from a host slot.

RX LOS

The RX LOS when High indicates insufficient optical power for reliable signal reception.


P DOWN/RST

This is a multifunction pin for module Power Down and Reset. The P_Down/RST pin must be pulled up to VCC3 in the XFP module.

POWER DOWN FUNCTION

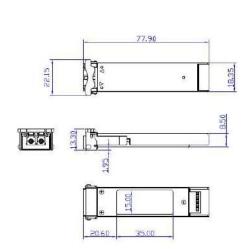
The P_Down pin, when held high by the host, places the module in the standby (Low Power) mode with a maximum power dissipation of 1.5W. This protects hosts which are not capable of cooling higher power modules which may be accidentally inserted.

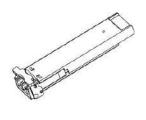
Pin Assignment

Pin Description

PIN	Logic	Symbol	Name/Description	Note
1		GND	Module Ground	1
2		VEE5	Optional -5.2V Power Supply	

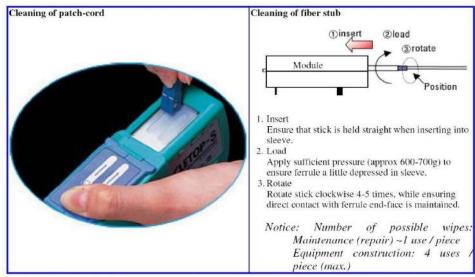
AXFP-10G-SR DATASHEET


3	LVTTL-I	Mod_DeSel	Module De-select; When held low allows module	
			to respond to 2-wire serial interface	
4	LVTTL-O		Interrupt; Indicates presence of an important	2
			condition which can be read over the 2-wire serial	
		Interrupt	interface	
5	LVTTL-I	TX_DIS	Transmitter Disable; Turns off transmitter laser output	
6		VCC5	+5V Power Supply	
7		GND	Module Ground	1
8		VCC3	+3.3V Power Supply	
9		VCC3	+3.3V Power Supply	
10	LVTTL-I/O	SCL	2-Wire Serial Interface Clock	2
11	LVTTL-I/O	SDA	2-Wire Serial Interface Data Line	2
12	LVTTL-O	Mod_Abs	Indicates Module is not present. Grounded in the	2
		_	Module	
13	LVTTL-O	Mod_NR	Module Not Ready; Indicating Module Operational	2
		_	Fault	
14	LVTTL-O	RX_LOS	Receiver Loss of Signal Indicator	2
15		GND	Module Ground	1
16		GND	Module Ground	1
17	CML-O	RD-	Receiver Inverted Data Output	
18	CML-O	RD+	Receiver Non-Inverted Data Output	
19		GND	Module Ground	1
20		VCC2	+1.8V Power Supply	3
			Power down; When high, requires the module to	
			limit power consumption to 1.5W or below, 2-	
21	LVTTL-I	P_Down/RST	Wire serial interface must be functional in the low	
		_ ′	power mode.	
			Reset; The falling edge initiates a complete reset of	
			the module including the 2-wire serial interface,	
			equivalent to a power cycle.	
22		VCC2	+1.8V Power Supply	3
23		GND	Module Ground	1
24	PECL-I	RefCLK+	Not Required	
25	PECL-I	RefCLK-	·	
26		GND	Module Ground	1
27		GND	Module Ground	1
28	CML-I	TD-	Transmitter Inverted Data Input	
29	CML-I	TD+	Transmitter Non-Inverted Data Input	
30		GND	Module Ground	1


Notes:

- 1. Module ground pins Gnd are isolated from the module case and chassis ground within the module.
- 2. Shall be pulled up with 4.7K-10Kohms to a voltage between 3.15V and 3.45V on the host board.
- 3. The 1.8V power supply can be optionally programmed to voltages lower than 1.8V in modules supporting the variable power supply.

Dimensions



DIMENSIONS ARE IN MILLIMETERS

ALL DIMENSIONS ARE ±0.2mm UNLESS OTHERWISE SPECIFIED

Optical Receptacle Cleaning Recommendations

All fiber stubs inside the receptacle portions were cleaned before shipment. In the event of contamination of the optical ports, the recommended cleaning process is the use of forced nitrogen. If contamination is thought to have remained, the optical ports can be cleaned using a NTT international Cletop® stick type and HFE7100 cleaning fluid. Before the mating of patch-cord, the fiber end should be cleaned up by using Cletop® cleaning cassette.

Note: The pictures were extracted from NTT-ME website. And the Cletop® is a trademark registered by NTT-ME

Ordering Information

Model Number	Part Number	Reach	Input/Output	Signal Detect	Voltage	Temperature
AXFP-10G-SR	OP7K-MX3-85-C	300 m	AC/AC	TTL	3.3V	-10°C to 70 °C
AXFP-10G-SR-I	OP7K-MX3-85-I	300 m	AC/AC	TTL	3.3V	-10°C to 85°C

Copyright @ Alpha Bridge Technologies Private Limited

This document is ABTPL Public Information. ABTPL reserves the right to alter, update, and otherwise change the information contained in the document from time to time. www.alphabridge.tech

