

AQSFP28-100G-SR4 Datasheet

Alpha Bridge AQSFP28-100G-SR4 Datasheet

Features

- QSFP28 MSA-compliant
- Compliant to IEEE 802.3bm 100GBASE-SR4
- Four independent full-duplex channels
- Supports 103.1Gb/s aggregate bit rate
- Up to 100m OM4 MMF transmission
- Operating case temperature: 0 to 70°C
- Single 3.3V power supply
- 4x25G electrical interface (OIF CEI-28G-VSR)
- Maximum power consumption 2.5W
- MTP/MPO optical connector
- RoHS-6 compliant

Applications

- Rack to Rack
- Data Center
- Infiniband QDR, DDR and SDR
- 100G Ethernet

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Note		
Storage Temperature	Ts	-40	85	°C			
Operating Case Temperature	Тор	0	70	°C			
Power Supply Voltage	Vcc	-0.5	3.6	V			
Relative Humidity (non-condensation)	RH	0	85	%			
Damage Threshold, each Lane	THa	3.4		dBm			

Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Units	Note
Operating Temperature	Top	0		70	°C	
Power Supply Voltage	Vcc	3.135	3.3	3.465	V	
Data Rate, each Lane			25.78125		Gb/s	
Data Rate Accuracy		-100		100	ppm	
Pre-FEC Bit Error Ratio				5x10 ⁻⁵		
Post-FEC Bit Error Ratio				1x10 ⁻¹²		1
Control Input Voltage High		2		Vcc	V	
Control Input Voltage Low		0		0.8	V	
Link Distance (OM3 MMF)	D1			70	m	
Link Distance (OM4 MMF)	D2			100	m	

Notes:

- 1. FEC provided by host system.
- 2. FEC required on the host system to support maximum distance.

Diagnostics Monitoring

symbol	Accuracy	Unit	Notes
Dmi_Temp	±3	°C	Over operating temperature range
Dmi_VCC	±0.15	V	over full operating range
Dmi_RX_Ch	± 2	Db	1
Dmi_lbias_Ch	± 10%	Ма	ch1-ch4
Dmi_TX_Ch	± 2	dB	1
	Dmi_Temp Dmi_VCC Dmi_RX_Ch Dmi_lbias_Ch	Dmi_Temp±3Dmi_VCC±0.15Dmi_RX_Ch±2Dmi_Ibias_Ch±10%	Dmi_Temp±3°CDmi_VCC±0.15VDmi_RX_Ch±2DbDmi_lbias_Ch±10%Ma

Notes:

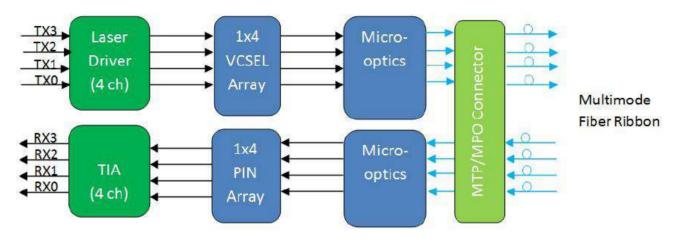
1. Due to the measurement accuracy of different single-mode fibers, there could be an additional +/-1 dB fluctuation or a +/- 3 dB total accuracy.

Transmitter Electro-Optical Characteristics (each Lane)

Parameter	Symbol	Min.	Тур.	Max.	Units	Note
Power Consumption	lcc			2.5	W	
Supply Current	TP1a			757	mA	
Overload Differential Voltage pk-pk	TP1		900		mV	
Common Mode Voltage (Vcm)	TP1		350	2850	mV	1
Differential Termination Resistance Mismatch	TP1			10	%	At 1MHz
		See CEI-				
Differential Return Loss (SDD11)	TP1		19		dB	
Common Mode to Differential conversion and						
Differential to						
Common Mode conversion						
(SDC11, SCD11)	See CEI-28G-VSR Equation 13-20				dB	
Stressed Input Test	See CEI-28G-VSR Section 13.3.11.2.1					
Center Wavelength	λc	840	850	860	nm	
RMS Spectral Width	∆λrms			0.6	nm	
Average Launch Power, each Lane	PAVG	-8.4		2.4	dBm	
Optical Modulation Amplitude	POMA	-6.4		3	dBm	2
Launch Power in OMA minus		-7.3			dBm	
TDEC, each Lane						
Transmitter and Dispersion Eye				4.3	dB	
Closure (TDEC), each Lane						
Extinction Ratio	ER	2			dB	
Optical Return Loss Tolerance	TOL			12	dB	
Average Launch Power OFF	Poff			-30	dBm	
Encircled Flux	≧86% at 19μm					
		≦30% a				
Transmitter Eye Mask Definition {X1, X2, X3, Y1, Y2,						
Y3}	{0.3,	0.38, 0.45	, 0.35, 0.41,	0.5}		3

Receiver Electro-Optical Characteristics (each Lane)

Parameter	Test Point	Min	Тур.	Мах	Units	Notes
Differential Voltage, pk-pk	TP4			900	mV	
Common Mode Voltage (Vcm)	TP4	-350		2850	mV	1
Common Mode Noise, RMS	TP4			17.5	mV	
Differential Termination Resistance	TP4			10	%	At 1MHz
Mismatch						
Differential Return Loss (SDD22)	TP4	See CE	I-28G-VSR E 19	quation 13-	dB	
Common Mode to Differential conversion and Differential to Common Mode conversion (SDC22, SCD22)	TP4	See CE	1-28G-VSR E 20	quation 13-	dB	
Common Mode Return Loss (SCC22)	TP4			-2	dB	2
Transition Time, 20 to 80%	TP4	9.5			ps	
Vertical Eye Closure (VEC)	TP4			5.5	dB	
Eye Width at 10 ⁻¹⁵ probability (EW15)	TP4	0.57			UI	
Eye Width at 10-15 probability (EW15)	TP4	228			mV	
(EH15)						
Center Wavelength	λc	840	850	860	Nm	
Damage Threshold, each Lane	TH₀	3.4			dBm	3
Average Receive Power, each Lane		-10.3		2.4	dBm	
Receive Power (OMA), each Lane				3	dBm	
Receiver Sensitivity (OMA), each Lane	SEN			-9.2	dBm	For BER=5x10-5
Stressed Receiver Sensitivity				-5.2	dBm	4
(OMA), each Lane						
Receiver Reflectance	RR		-12		dB	
LOS Assert	LOSA	-30			dBm	
LOS Deassert	LOSD		-12		dBm	
LOS Hysteresis	LOSH	0.5			dB	
Condition	ns of Stress F	Receiver S	Sensitivity Te	est (Note 3)		
Vertical Eye Closure Penalty, each Lane				1.9	dB	
Stressed Eye J2 Jitter, each Lane				0.3	UI	
Stressed Eye J9 Jitter, each Lane				0.47	UI	
OMA of each aggressor lane				0.4	dBm	


Notes:

1. Vcm is generated by the host. Specification includes effects of ground offset voltage.

- 2. From 250MHz to 30GHz.
- 3. The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power.
- Measured with conformance test signal at receiver input for BER = 5x10⁻⁵
 Vertical eye closure penalty, stressed eye J2 jitter, stressed eye J4 jitter, and stressed receiver eye mask definition are test

Alpha Bridge[®] Technologies

conditions for measuring stressed receiver sensitivity. They are not characteristics of the receiver

Block Diagram of Transceiver

This product is a parallel 100Gb/s Quad Small Form-factor Pluggable (QSFP28) optical module. It provides increased port density and total system cost savings. The QSFP28 full-duplex optical module offers 4 independent transmit and receive channels, each capable of 25Gb/s operation for an aggregate data rate of 100Gb/s on 100 meters of OM4 multi-mode fiber.

An optical fiber ribbon cable with an MTP/MPO connector can be plugged into the QSFP28 module receptacle. Proper alignment is ensured by the guide pins inside the receptacle. The cable usually cannot be twisted for proper channel to channel alignment. Electrical connection is achieved through an MSA-compliant 38-pin edge type connector.

The module operates by a single +3.3V power supply. LVCMOS/LVTTL global control signals, such as Module Present, Reset, Interrupt and Low Power Mode, are available with the modules. A 2-wire serial interface is available to send and receive more complex control signals, and to receive digital diagnostic information.

Individual channels can be addressed and unused channels can be shut down for maximum design flexibility. The product is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP28 Multi-Source Agreement (MSA). It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference. The module offers very high functionality and feature integration, accessible via a two-wire serial interface.

This product converts parallel electrical input signals into parallel optical signals, by a driven Vertical Cavity Surface Emitting Laser (VCSEL) array. The transmitter module accepts electrical input signals compatible with Common Mode Logic (CML) levels. All input data signals are differential and internally terminated. The receiver module converts parallel optical input signals via a photo detector array into parallel electrical output signals. The receiver module outputs electrical signals are also voltage compatible with Common Mode Logic (CML) levels. All data signals are differential and support a data rates up to 25Gb/s per channel. Figure 1 shows the functional block diagram of this product.

A single +3.3V power supply is required to power up the module. Both power supply pins VccTx and VccRx are internally connected and should be applied concurrently. As per MSA specifications the module offers 7 low speed hardware control pins (including the 2-wire serial interface): ModSelL, SCL, SDA, ResetL, LPMode, ModPrsL and IntL.

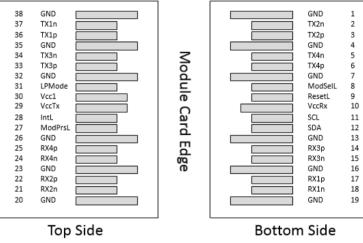
Module Select (ModSelL) is an input pin. When held low by the host, the module responds to 2-wire serial communication commands. The ModSelL allows the use of multiple QSFP28 modules on a single 2-wire interface bus – individual ModSelL lines for each QSFP28 module must be used.

Serial Clock (SCL) and Serial Data (SDA) are required for the 2-wire serial bus communication interface and enable the host to access the QSFP28 memory map.

The ResetL pin enables a complete module reset, returning module settings to their default state, when a low level on the ResetL pin is

AQSFP28-100G-SR4 Datasheet

Alpha Bridge[®] Technologies


held for longer than the minimum pulse length. During the execution of a reset the host shall disregard all status bits until the module indicates a completion of the reset interrupt. The module indicates this by posting an IntL (Interrupt) signal with the Data_Not_Ready bit negated in the memory map. Note that on power up (including hot insertion) the module should post this completion of reset interrupt without requiring a reset.

Low Power Mode (LPMode) pin is used to set the maximum power consumption for the module in order to protect hosts that are not capable of cooling higher power modules, should such modules be accidentally inserted.

Module Present (ModPrsL) is a signal local to the host board which, in the absence of a module, is normally pulled up to the host Vcc. When a module is inserted into the connector, it completes the path to ground through a resistor on the host board and asserts the signal. ModPrsL then indicates a module is present by setting ModPrsL to a "Low" state.

Interrupt (IntL) is an output pin. Low indicates a possible module operational fault or a status critical to the host system. The host identifies the source of the interrupt using the 2-wire serial interface. The IntL pin is an open collector output and must be pulled to the Host Vcc voltage on the Host board.

Pin Assignment (MSA compliant connector)

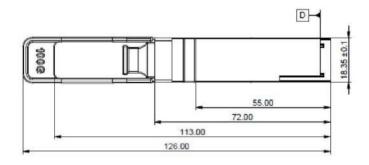
Viewed From Top

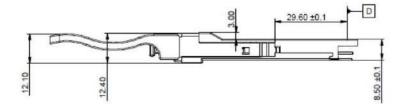
Viewed From Bottom

Pin Descriptions

PIN	Logic	Symbol	Name/Description	Note
1		GND	Ground	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	
3	CML-I	Tx2p	Transmitter Non-Inverted Data output	
4		GND	Ground	1
5	CML-I	Tx4n	Transmitter inverted Data Input	
6	CML-I	Tx4p	Transmitter Non-Inverted Data output	
7		GND	Ground	1
8	LVTLL-I	ModSelL	Module Select	
9	LVTLL-I	ResetL	Module Reset	
10		VccRx	+3.3V Power Supply Receiver	2
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock	
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data	
13		GNC	Ground	
14	CML-O	Rx3p	Receiver Non-Inverted Data output	
15	CML-O	Rx3n	Receiver Inverted Data output	
16		GND	Ground	1

AQSFP28-100G-SR4 Datasheet

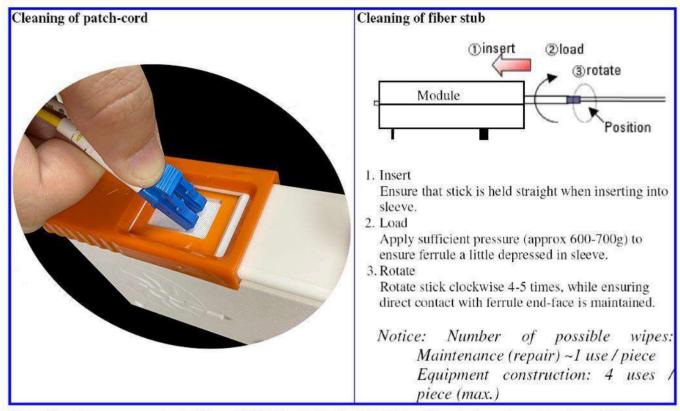



17	CML-O	Rx1p	Receiver Non-Inverted Data Output	
18	CML-O	Rx1n	Receiver Inverted Data Output	
19		GND	Ground	1
20		GND	Ground	1
21	CML-O	Rx2n	Receiver Inverted Data output	
22	CML-O	Rx2p	Receiver Non-Inverted Data output	
23		GND	Ground	1
24	CML-O	Rx4n	Receiver Inverted Data output	
25	CML-0	Rx4p	Receiver Non-Inverted Data output	
26		GND	Ground	1
27	LVTTL-O	ModPrsL	Module Present	
28	LVTTL-O	IntL	Interrupt	
29		VccTx	+3.3V Power Supply transmitter	
30		Vcc1	+3.3V Power Supply	
31	LVTTL-I	LPMode	Low Power Mode	
32		GND	Ground	1
33	CML-I	Tx3p	Transmitter Non-Inverted Data Input	
34	CML-I	Tx3n	Transmitter Inverted Data Output	
35		GND	Ground	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	
37	CML-I	Tx1n	Transmitter Inverted Data Output	
38		GND	Ground	1

Notes:

- 1. GND is the symbol for signal and supply (power) common for the module. All any common within the module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane.
- 2. VccRx, Vcc1 and VccTx are applied concurrently and may be internally connected within the module in any combination. Vcc contacts in SFF-8672 each have a steady state current rating of 1A.

Dimensions



Optical Receptacle Cleaning Recommendations :

All fiber stubs inside the receptacle portions were cleaned before shipment. In the event of contamination of the optical ports, the recommended cleaning process is the use of forced nitrogen. If contamination is thought to have remained, the optical ports can be cleaned using a NTT international Cletop[®] stick type and HFE7100 cleaning fluid. Before the mating of patch-cord, the fiber end should be cleaned up by using Cletop[®] cleaning cassette.

Note: The pictures were extracted from NTT-ME website. And the Cletop® is a trademark registered by NTT-ME

Ordering information:

Model Number	Part Number	Voltage	Temperature
AQSFP-100G-SR	OPCW-MX1-85-CB	3.3V	0°C to 70 °C

Note: All information contained in this document is subject to change without notice.

Copyright @ Alpha Bridge Technologies Private Limited

This document is ABTPL Public Information. ABTPL reserves the right to alter, update and otherwise change the information contained in the document from time to time. <u>www.alphabridge.tech</u>

