

Alpha Bridge AQSFP-DD-DR4+ Datasheet

Features

- QSFP-DD MSA-compliant
- Parallel 4 Optical Lanes
- 100G Lambda MSA 100G-FR Specification compliant
- Up to 2km transmission on single mode fiber (SMF) with FEC
- 8x53.125Gb/s electrical interface (400GAUI-8)
- Data Rate 106.25Gbps (PAM4) per channel
- Maximum power consumption 8.5W
- MPO-12 connector
- Operating case temperature: 0°C ~70°C
- RoHS compliant

Applications

- 400G Ethernet
- Infini interconnects
- Datacenter Enterprise networking

Description

This product is a 400Gb/s Quad Small Form Factor Pluggable-double density (QSFP-DD) optical module designed for 2km optical communication applications. The module converts 8 channels of 50Gb/s (PAM4) electrical input data to 4 channels of parallel optical signals, each capable of 100Gb/s operation for an aggregate data rate of 400Gb/s. Reversely, on the receiver side, the module converts 4 channels of parallel optical signals of 100Gb/s each channel for an aggregate data rage of 400Gb/s into 8 channels of 50Gb/s (PAM4) electrical output data.

An optical fiber cable with an MTP/MPO-12 connector can be plugged into the QSFP-DD DR4 module receptacle. Proper alignment is ensured by the guide pins inside the receptacle. The cable usually cannot be twistedfor proper channel to channel alignment. Electrical connection is achieved through a QSFP-DD MSA-compliant edgetype connector.

The product is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP-DD Mulit-Source Agreement (MSA) Type 2. It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Мах.	Units	Note
Storage Temperature	Tst	-40	85	°C	
Supply Voltage	Vcc	-0.5	3.6	V	
Case Operating Temperature	Тор	0	70	°C	
Humidity (non-condensing)	Rh	0	85	%	
Damage Threshold, each Lane	THd	5		dBm	

Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Мах.	Units
Operating Case Temperature	Тса	0		70	°C
Supply Voltage	Vcc	3.135	3.3	3.465	V
Electrical Data Rage, each Lane			26.5625		GBd
Optical Data Rage, each Lane			53.125		GBd
Power Supply Noise	Vn			66	mV
Data Rate Accuracy		-100		100	ppm
Pre-FEC Bit Error Ratio				24x10-4	
Post-FEC Bit Error Ratio				1x10-15	
Control Input Voltage High		2		Vcc	V
Control Input Voltage Low		0		0.8	V
Link Distance	D	0.002		2	

Notes:

- 1. FEC provided by host system.
- 2. FEC required on host system to support maximum distance.

Diagnostic Monitoring Interface

Parameter	Symbol	Accuracy	Unit	Notes	Parameter
Temperature monitor absolute error	DMI_Temp	± 3	°C	Over operating	Temperature monitor
remperature moment absolute error	Divii_Temp			over operating	absolute error
Supply voltage monitor absolute error	DMI_VCC	± 0.1	V	Over full	Supply voltage monitor
Supply voltage monitor absolute error	Divii_vcc	10.1	V	operating range	absolute error
Channel RX power monitor absolute	DMI RX Ch	± 3	dB	1	Channel RX power
error	DIVII_KX_CII	± 3	uв	1	monitor absolute error
Channel Bias current monitor	DMI Ibias Ch	± 10%	mA		Channel Bias current
Chainlei bias current monitor	Divii_ibias_Cii	110/0	IIIA		monitor
Channel TX power monitor absolute	DMI_TX_Ch	± 3	dB	1	Channel TX power
error	DIVII_1X_CII	<u> </u>	uD	l l	monitor absolute error

Notes:

1.Due to the measurement accuracy of different single-mode fibers, there could be an additional +/-1 dB fluctuation or a

+/-3 dB total accuracy.

Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Units	Note			
Signaling Rate, each Lane	DR		53.125 ±	100ppm	GBd	PAM4			
Center Wavelength	λс	1304.5	1310	1317.5	NM				
		Transmit	ter						
Side-mode Suppression Ratio	SMSR	30			dB				
Average Launch Power, each Lane	P _{AVG}	-2.4		4	dBm	1			
Optical Modulation Amplitude	Рома	-0.2		4.2					
(OMA _{outer}), each Lane					dBm	2			
Launch Power in OMA _{outer} minus		-1.6			dB	For ER≧5dB			
TDECQ, each Lane		-1.5			dB	For ER≦5dB			
Transmitter and Dispersion Eye Closure for PAM4(TDECQ), each lane	TDECQ			3.4	dB	SSPRQ			
TDECQ-10*log ₁₀ (C _{eq}) ,each Lane				3.4	dB	3			
Extinction Ratio	ER	3.5			dB				
RIN _{21.4} OMA	RIN			-136	dB/Hz				
Optical Return Loss Tolerance	TOL			17.1	dB				
Transmitter Reflectance	Rt			-26	dB				
Average Launch Power of OFF									
Transmitter, each Lane	Poff			-15	dBm				
LOS Assert Level	LOSA		50		mV	4			
LOA De-assert Level	LOSD		100		mV				
	Receiver								
Damage Threshold, each Lane	THd	5			dBm	5			
Average receiver Power, each Lane		-6.4		4	dBm	6			
Receiver Power (OMA _{outer}), each Lane				4.2	dBm				
Receiver Sensitivity (OMAouter), each			Equation						

AQSFP-DD-DR4+ Datasheet

	T		1 .		l	
Lane	SEN		-1		dBm	7
Stressed Receiver Sensitivity in						
OMA						
outer, each Lane	SRS			-2	dBm	8
BER @RxAOP= -2dBm				2x10 ⁻⁶		9
BER @RxAOP= -0dBm				2x10 ⁻⁶		9
BER @RxAOP= +2dBm				2x10 ⁻⁶		9
BER @RxAOP= +4.5dBm				2x10 ⁻⁵		9
Receiver Reflectance	RR			-26	dB	
LOS Assert	LOSA	-15		-11	dBm	10
LOS De-assert	LOSD	-14		-10	dBm	
LOS Hysteresis	LOSH	0.5		5		
	Stressed Cond	itions for Stress R	eceiver Sensiti	vity (Note 8)		
Stressed Eye Closure for PAM4						
(SECQ), Lane under Test			3.4		dB	
SECQ-10*log10(Ceq), Lane under				3.4	dB	
Test				5.4	ub	
OMAouter of each Aggressor Lane			4.2		dBm	

Notes:

- 1. Average launch power, each lane (min) is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant, however, a value above this does not ensure compliant.
- 2. Even if the TDECQ < 1.4dB for an extinction ratio of ≥5dB or TDECQ < 1.1dB for an extinction ratio of < 5dB, the OMA_{outer} (min) must exceed the minimum value specified here.
- 3. C_{eq} is a coefficient defined in IEEE Std 802.3-2018 clause 121.8.5.3 which accounts for reference equalizer noise enhancement.
- 4. Average receiver power, each lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 5. The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signalhaving this power level on one lane. The receiver does not have to operate correctly at this input power.
- 6. Receiver sensitivity (OMA_{outer}), each lane (max) is informative and is defined for a transmitter with a value of SECQ up to 3.4dB. It should meet Equation (1), which is illustrated in Figure 4.

RS=max (-3.9, SECQ-5.3) dBm (1)

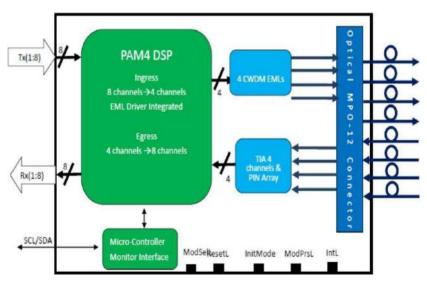
Where

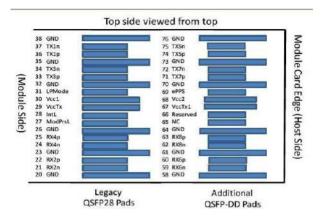
RS is the receiver sensitivity

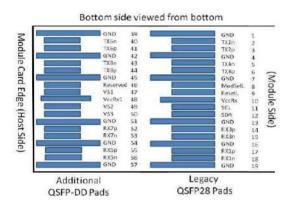
SECQ is the SECQ of the transmitter used to measure the receiver sensitivity.

- 7. Measured with conformance test signal at TP3 for the BER equal to 2.4x10⁻⁴
- 8. These test conditions are for measuring stressed receiver sensitivity. They are not characteristics of thereceiver.

Electronical Characteristics


Parameter	Symbol	Min.	Тур.	Max.	Units	Note			
Power Consumption				8.5	W				
Supply Current	Icc			2.58	Α				
Power Supply Ripple				15	mv				
Transmitter (each Lane)									
Signaling Rate, each Lane	TP1	26.5625 ± 100	26.5625 ± 100 ppm		GBd				
Differential pk-pk Input voltage Tolerance	TP1a	900	900		mVpp	1			
Differential Termination Mismatch	TP1				%				
Differential Input Return Loss	TP1	IEEE 802.3- 2015 Equation -(83E-5)			Db				
Differential to Common Mode Input Return Loss	TP1	IEEE 802.3- 2015 Equation -(83E-6)			Db				

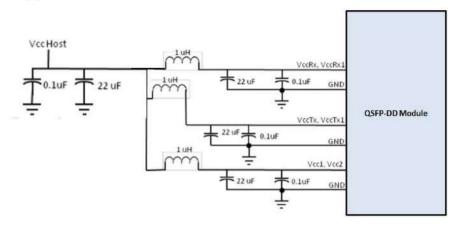

AQSFP-DD-DR4+ Datasheet


Module Stressed Input Test	TP1a	See IEEE 802.3bs 120E.3.4.1				2
Single-ended Voltage Tolerance Range (Min)	TP1a	-0.4 to 3.3			V	
DC Common Mode Input Voltage	TP1	-350		2850	mV	3
Input AC Coupling Capacitor	TP1a		0.1		uF	
	F	Receiver (each Lane)				
Differential Peak to Peak output voltage	TP4			900	mVpp	
AC Common Mode Output Voltage, RMS	TP4			17.5	mV	
Differential Termination Mismatch	TP4			10	%	
Differential Output Return Loss	TP4	IEEE 802.3- 2015 Equation (83E-2)				
Common to Differential Mode Conversion Return	TP4	IEEE 802.3-2015 Equation (83E-3)				
Transition Time, 20% to 80%	TP4	9.5			Ps	
Near-end Eye Symmetry Mask Width (ESMW)	TP4	0.265			UI	
Near-end Eye Height, Differential	TP4	70			mV	
Far-end Eye Symmetry Mask Width (ESMW)	TP4	0.2			UI	
Far-end Eye Height, Differential	TP4	30			mV	
Far-end Pre-cursor ISI Ratio	TP4	-4.5		2.5	%	
Common Mode Output Voltage (Vcm)	TP4	-350		2850	mV	3
Output AC Coupling Capacitor	TP4		0.1			

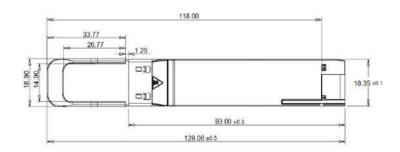
Block Diagram of Transceiver

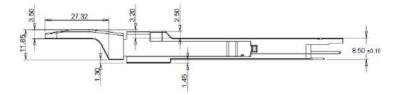
Pin Assignment and Description

PIN	Logic	Symbol	Name / Description	Note
1		GND	Ground	
2	CML-I	Tx2n	Transmitter inverted data input	
3	CML-I	Tx2p	Transmitter non-inverted data input	
4		GND	Ground	
5	CML-I	Tx4n	Transmitter inverted data input	
6	CML-I	Tx4p	Transmitter non-inverted data input	
7		GND	Ground	
8	LVTTL-I	MoDSeIL	Module Select	
9	LVTTL-I	ResetL	Module Reset	
10		VccRx	+3.3v Receiver Power Supply	
11	LVCMOS-I/O	SCL	2-wire Serial interface clock	
12	LVCMOS-I/O	SDA	2-wire Serial interface data	
13		GND	Ground	
14	CML-O	RX3p	Receiver non-inverted Data Output	
15	CML-O	RX3n	Receiver inverted Data Output	
16		GND	Ground	
17	CML-O	Rx1p	Receiver non-inverted Data Output	
18	CML-O	Rx1n	Receiver inverted Data Output	
19		GND	Ground	
20		GND	Ground	
21	CML-O	Rx2n	Receiver Inverted Data Output	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	
23		GND	Ground	
24	CML-O	Rx4n	Receiver Inverted Data Output	
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	
26		GND	Ground	
27	LVTTL-O	ModPrsL	Module Present	


28	LVTTL-O	IntL	Interrupt	
29	EVIIL-0	VccTx	+3.3v Power supply transmitter	
30		Vcc1	+3.3v Power supply	
31	LVTTL-I	LPMode	Low Power Mode	
32	LVIIL-I	GND	Ground	
33	CML-I	Tx3p	Transmitter Non-Inverted Data Input	
34	CML-I	Tx3n	Transmitter Inverted Data Input Transmitter Inverted Data Input	
35	CIVIL-I	GND	Ground	
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	
37		•	·	
	CML-I	Tx1n	Transmitter Inverted Data Input	
38		GND	Ground	
39	0.41.1	GND	Ground	
40	CML-I	Tx6n	Transmitter Inverted Data Input	
41	CML-I	Тх6р	Transmitter Non-Inverted Data Input	
42		GND	Ground	
43	CML-I	Tx8n	Transmitter Inverted Data Input	
44	CML-I	Тх8р	Transmitter Non-Inverted Data Input	
45		GND	Ground	
46		Reserved	For future use	
47		VS1	Module Vendor Specific 1	
48		VccRx1	3.3V Power Supply	
49		VS2	Module Vendor Specific 2	
50		VS3	Module Vendor Specific 3	
51		GND	Ground	
52	CML-O	Rx7p-	Receiver Non-Inverted Data Output	
53	CML-O	Rx7n	Receiver Inverted Data Output	
54		GND	Ground	
55	CML-O	Rx5p-	Receiver Non-Inverted Data Output	
56	CML-O	Rx5n	Receiver Inverted Data Output	
57		GND	Ground	
58		GND	Ground	
59	CML-O	Rx6n-	Receiver Inverted Data Output	
60	CML-O	Rx6p	Receiver Non-Inverted Data Output	
61		GND	Ground	
62	CML-O	Rx8n	Receiver Inverted Data Output	
63	CML-O	Rx8p	Receiver Non-Inverted Data Output	
64		GND	Ground	
65		NC	No connect	
66		Reserved	For future use	
67		VccTx1	3.3V Power Supply	
68		Vcc2	3.3V Power Supply	
69		Reserved	For Future Use	
70		GND	Ground	1
71	CML-I	Тх7р	Transmitter Non-Inverted Data Input	
72	CML-I	Tx7n	Transmitter Inverted Data Input	1
73	5	GND	Ground	1
74	CML-I	Тх5р	Transmitter Non-Inverted Data Input	†
75	CML-I	Tx5n	Transmitter Inverted Data Input	
75 76	CIVIL	GND	Ground	+
70		טוזט	Ground	1

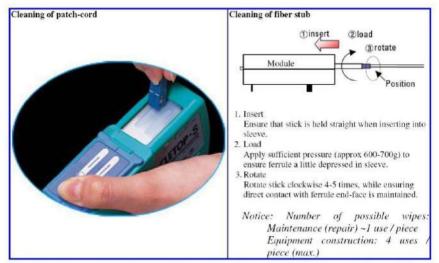
- QSFP-DD uses common ground (GND) for all signals and supply (power). All are common within the QSFP-DD module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly tothe host board signal-common ground plane.
- 2. VccRx, RccRx1, Vcc1, Vcc2, VccTx and VccTx1 shall be applied concurrently. Requirements defined for the hostside of the Host Card Edge Connector. VccRx, VccRx1, Vccl, Vcc2, VccTx and VccTx1 may be internally connected within the module in any combination. The corrector Vcc pins are each rated for a maximum current of1000mA.




- 3. All Vendor Specific, Reserved, No connect and ePPS (if not used) pins may be terminated with 50 Ohms to ground on the host. Pad 65 (No Connect) shall be left unconnected within the module. Vendor specific and Reserved pads shall have an impedance to GND that is greater than 10 kOhms and less than 100pF.
- 4. Plug Sequence specifies the mating sequence of the host connector and module. The sequence is 1A, 2A, 3A,1B, 2B, 3B. (see Figure 2 for pad locations) Contact sequence A will make, then break contact with additional QSFP-DD pads. Sequence 1A, 1B will then occur simultaneously, followed by 2A, 2B, followed by 3A, 3B.

Recommended Power Supply Filter

Dimensions



Optical Receptacle Cleaning Recommendations:

All fiber stubs inside the receptacle portions were cleaned before shipment. In the event of contamination of the optical ports, the recommended cleaning process is the use of forced nitrogen. If contamination is thought to have remained, the optical ports can be cleaned using a NTT international Cletop® stick type and HFE7100 cleaning fluid. Before the mating of patch-cord, the fiber end should be cleaned up by using Cletop® cleaning cassette.

Note: The pictures were extracted from NTT-ME website. And the Cletop® is a trademark registered by NTT-ME

Ordering Information

Model Number	Part Number	Reach	Wavelength	Temperature
AQSFP-DD-DR4+	OPDY-S02-13-CBS	2km	1310nm	0°Cto 70°C

Note: All information contained in this document is subject to change without notice.

This document is ABTPL Public Information. ABTPL reserves the right to alter, update, and otherwise change the information contained in the document from time to time. www.alphabridge.tech

