

Alpha Bridge AQSFP-40G-SR4,3 Datasheet

Features

- 4 independent full-duplex channels
- Up to 11.2Gb/s data rate per channel
- MTP/MPO optical connector
- QSFP+ MSA compliant
- Digital diagnostic capabilities
- Up to 300m transmission on OM3 multi-mode fiber
- CML compatible electrical I/O
- Single 3.3V power supply
- Commercial case temperature: 0 to 70oC
- XLPPI electric interface
- Maximum power consumption 1.5W
- RoHS-6 compliant

Applications

- Rack to Rack
- Data Center
- Infiniband QDR, DDR and SDR
- 40G Ethernet

Description

This product is a parallel 40Gb/s Qual Small Form Factor Pluggable (QSFP+) optical module. It provides increased port density and total system cost saving. The QSFP+ full-duplex module offers 4 independent transmit and receive channels, each capable of 10Gb/s operation for an aggregate data rate of 40Gb/s on 300 meters of OM3 Multi-mode fiber. An optical fiber ribbon cable with an MTP/MPO connector can be plugged into the QSFP+ module receptacle. Proper alignment is ensured by the guide pins inside the receptacle. The cable usually can not be twisted for proper channels to channel alignment. Electrical connection is achieved through an MSA-compliant 38-pin edge type connector.

The module operates by a single 3.3V power supply. LVCMOS/LVTTL global control signals, such as Module Present, Reset, Interrupt and Low Power Mode, are available with the modules. A 2-wire serial interface is available to send and receive more complex control signals, and to receive digital diagnostic information. Individual channels can be addressed and unused channels can be shut down for maximum design flexibility.

The product is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP+ Multi-Source Agreement (MSA). It has been designed to meet the harshest external operating conditions including temperature, Humidity and EMI interface. The module offers very high functionality and feature integration, accessible via a two-wire serial interface

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units				
Storage Ambient Temperature	Тѕтѕ	-40	85	°C				
Supply Voltage	Vcc	0	70	°C				
Operating Case Temperature	Тор	-0.5	3.6	V				
Relative Humidity (non-condensation)	RH	0	85	%				
Damage Threshold, each Lane	THd	3.4		dBm				

Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Units
Operating Temperature	Тор	0		+70	°C
Power Supply Voltage	Vcc	3.135	3.3	3.465	V
Data Rate, each Lane			10.3125	11.2	Gb/s
Control Input Voltage High		2		Vcc	V
Control Input Voltage Low		0		0.8	V
Link Distance (OM3)	D			300	m

Diagnostics

Parameter	Symbol	Accuracy	Units	Notes
Temperature monitor absolute error	DMI_Temp	±3	°C	Over operating temperature range
Supply voltage monitor absolute error	DMI_VCC	±0.1	V	Over full operating range
Channel RX power monitor absolute error	DMI_RX_Ch	±2	dB	1
Channel Bias current monitor	DMI_Ibias_Ch	±10%	mA	Ch1-Ch4
Channel TX power monitor absolute error	DMI_TX_Ch	±2	dB	1

Notes: 1. Due to measurement accuracy of different single mode fibers, there could be an additional +/-1 dB fluctuation, or a +/- 3 dB total accuracy.

Optical Characteristics

Parameter	Symbol	Min	Туре	Max	Unit	Notes
Center Wavelength	λC	840	850	860	nm	1
	<u> </u>	Transmitter				
RMS Spectral Width	$\Delta \lambda_{ms}$			0.45	nm	1
Average Launch Power, each Lane	P _{AVG}	-7.3		1	dBm	2
Optical Modulation Amplitude (OMA) each Lane	Рома	-4.3		3	dBm	1
Difference in Launch Power between any Two Lanes (OMA)	Ptx,diff			4	dB	
Peak Power, each Lane	PP⊤			4	dBm	
Launch Power in OMA minus Transmitter and Dispersion Penalty (TDP) each Lane		-6.5			dBm	
TDP, each lane	TDP			3.5	dB	
Extinction Ratio	ER	3			dB	
Relative Intensity Noise	RIN			-128	dB/Hz	12dB reflection
Optical Return Loss Tolerance	TOL			12	dB	
Encircled Flux	≧ 8	36% at 19um ≦				
Transmitter Eye Mask Definition (X1, X2, X3, Y1, Y2, Y3)	{(0.23,0.34,0.43,	0.27,0.35,0.4	}		
Average Launch Power OFF Transmitter each Lane	Poff			-30	dBm	
		Receiver				
Damage Threshold, each Lane	THd	3.4			dBm	3
Average Receive Power, each Lane		-9.9		2.4	dBm	
Receiver Reflectance	RR			-12	dB	
Receiver Power (OMA) each Lane				3	dBm	
Receiver Sensitivity (OMA) each Lane	SEN			-11.1	dBm	
Stressed Receiver Sensitivity (OMA) each Lane				-7.5	dBm	4
Peak Power, each Lane	PP_R			4	dBm	
LOS Assert	LOSA	-30			dBm	
LOS Deassert	LOSD			-12	dBm	
LOS Hysteresis	LOSH	0.5			dB	
Со	nditions of Stress	Receiver Sens	itivity Test (N	lote 5)		
Vertical Eye Closure Penalty, each Lane			1.9		dB	
Stressed Eye J2 Jitter, each Lane			0.3		UI	
Stressed Eye J9 Jitter, each Lane			0.47		UI	
OMA of each aggressor Lane			-0.4		dBm	

Notes:

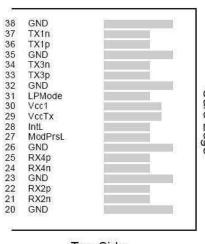
See Table 1. Trade-offs are available among center wavelength, spectral width, and minimum OMA.

- 2. The maximum transmitter average optical power of 1.0 dBm is well within the quardband of receiver overload specifications of commercially available 10GBASE-SR SFP+ transceivers offered by optech and other vendors..
- 3. The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power.
- 4. Measured with conformance test signal at receiver input for BER=1x10-12
- 5. Vertical eye closure penalty and stressed eye jitter are test conditions for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

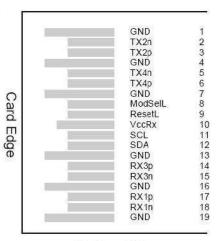
	RMS Spectral Width (nm)										
Center	Up to	0.05 to	0.1 to	0.15 to	0.2 to	0.25 to	0.3 to	0.35 to	0.4 to		
Wavelength (nm)	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45		
840 to 842	-4.2	-4.2	-4.1	-4.1	-3.9	-3.8	-3.5	-3.2	-2.8		
842 to 844	-4.2	-4.2	-4.2	-4.1	-3.9	-3.8	-3.6	-3.3	-2.9		
844 to 846	-4.2	-4.2	-4.2	-4.1	-4.0	-3.8	-3.6	-3.3	-2.9		
846 to 848	-4.3	-4.2	-4.2	-4.1	-4.0	-3.8	-3.6	-3.3	-2.9		
848 to 850	-4.3	-4.2	-4.2	-4.1	-4.0	-3.8	-3.6	-3.3	-3.0		
850 to 852	-4.3	-4.2	-4.2	-4.1	-4.0	-3.8	-3.6	-3.4	-3.0		
852 to 854	-4.3	-4.2	-4.2	-4.1	-4.0	-3.9	-3.7	-3.4	-3.1		
854 to 856	-4.3	-4.3	-4.2	-4.1	-4.0	-3.9	-3.7	-3.4	-3.1		
856 to 858	-4.3	-4.3	-4.2	-4.1	-4.0	-3.9	-3.7	-3.5	-3.1		
858 to 860	-4.3	-4.3	-4.2	-4.2	-4.1	-3.9	-3.7	-3.5	-3.2		

Electronical Characteristics

Parameter	Symbol	Min.	Тур.	Мах.	Units	Note	
Power Consumption				1.5	W		
Supply Current	Icc			450	mA		
Transceiver Power-on Initialization Time				2000	ms	1	
Transmitter (each lane) Single- ended Input Voltage Tolerance (Note 2)		-0.3		4	V	Referred to TP1 signal common	
AC Common Mode Input Voltage Tolerance		15			mV	RMS	
Differential Input Voltage Swing Threshold		50			mVpp	LOSA Threshold	
Differential Input Voltage Swing	Vin,pp	180		1200	mVpp		
Differential Input Impedance	Zin	90	100	110	Ohm		
Differential Input Return Loss		See IEEE 802.3	3ba 86A.4.1	1	dB	10MHz-11.1GHz	
J2 Jitter Tolerance	Jt2	0.17			UI		
J9 Jitter Tolerance	Jt9	0.29			UI		
Data Dependent Pulse Width							
Shrinkage (DDPWS) Tolerance		0.07			UI		
Eye Mask Coordinates (X1, X2, Y1, Y2)		0.11, 0.31	, 95, 350		UI / mV	Hit Ratio=5x10 ₋₅	
	Receiver (each Lane)						
Single-ended Output Voltage		-0.3		4	V	Referred to signal common	


AQSFP-40G-SR4,3 Datasheet

AC Common Mode Output Voltage				7.5	mV	RMS
Differential Output Voltage Swing	Vout,pp	600		800	mVpp	
Differential Output Impedance	Zout	90	100	110	Ohm	
Termination Mismatch at 1MHz				5	%	
Differential Output Return Loss		See IEEE 802.3	dB	10MHz~11.1GHz		
Common Mode Output Return Loss		See IEEE 802.3	dB	10MHZ~11.1GHz		
Output Transition Time		28				20% to 80%
J2 Jitter Output	Jo2			0.42	UI	
J9 Jitter Output	Jo9			0.65	UI	

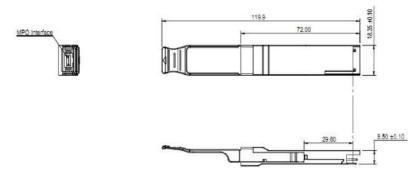

Notes:

- 1. The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical inputsignal having this power level on one lane. The receiver does not have to operate correctly at this input power.
- 2. Measured with conformance test signal at receiver input for BER = $1x10^{-12}$.
- 3. Vertical eye closure penalty and stressed eye jitter are test conditions for measuring stressed receiversensitivity. They are not characteristics of the receiver.

Pin Assignment

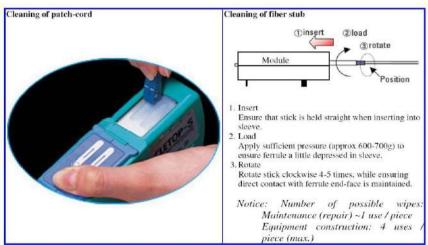
Top Side Viewed from Top

Bottom Side Viewed from Bottom


Pin Description

PIN	Logic	Symbol	Description	Note
1		GND	Ground	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	
3	CML-I	Tx2p	Transmitter Non-Inverted Data output	
4		GND	Ground	1
5	CML-I	Tx4n	Transmitter inverted Data Input	
6	CML-I	Тх4р	Transmitter Non-Inverted Data output	
7		GND	Ground	1
8	LVTLL-I	ModSeIL	Module Select	
9	LVTLL-I	ResetL	Module Reset	
10		VccRx	+3.3V Power Supply Receiver	2
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock	
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data	
13		GNC	Ground	
14	CML-O	Rx3p	Receiver Non-Inverted Data output	
15	CML-O	Rx3n	Receiver Inverted Data output	
16		GND	Ground	1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	
18	CML-O	Rx1n	Receiver Inverted Data Output	
19		GND	Ground	1
20		GND	Ground	1
21	CML-O	Rx2n	Receiver Inverted Data output	
22	CML-O	Rx2p	Receiver Non-Inverted Data output	
23		GND	Ground	1
24	CML-O	Rx4n	Receiver Inverted Data output	1
25	CML-O	Rx4p	Receiver Non-Inverted Data output	
26		GND	Ground	1
27	LVTTL-O	ModPrsL	Module Present	
28	LVTTL-O	IntL	Interrupt	
29		VccTx	+3.3V Power Supply transmitter	2
30		Vcc1	+3.3V Power Supply	2
31	LVTTL-I	LPMode	Low Power Mode	
32		GND	Ground	1
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input	
34	CML-I	Tx3n	Transmitter Inverted Data Output	
35		GND	Ground	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	
37	CML-I	Tx1n	Transmitter Inverted Data Output	
38		GND	Ground	1

Notes:


- 1. GND is the symbol for signal and supply (power) common for QSFP+ modules. All are common within the QSFP+ module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground plane.
- 2. VccRx, Vcc1 and VccTx are the receiver and transmitter power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown in Figure 4 below. Vcc Rx, Vcc1 and Vcc Tx maybe internally connected within the QSFP+ transceiver module in any combination. The connector pins are each rated for a maximum current of 500mA.

Optical Receptacle Cleaning Recommendations:

All fiber stubs inside the receptacle portions were cleaned before shipment. In the event of contamination of the optical ports, the recommended cleaning process is the use of forced nitrogen. If contamination is thought to have remained, the optical ports can be cleaned using a NTT international Cletop® stick type and HFE7100 cleaning fluid. Before the mating of patch- cord, the fiber end should be cleaned up by using Cletop® cleaning cassette.

Note: The pictures were extracted from NTT-ME website. And the Cletop® is a trademark registered by NTT-ME

Ordering Information

Model Number	Part Number	Voltage	Temperature
AQSFP-40G-SR4,3	OPCS-MX3-85-CB	3.3V	0°C to 70 °C

Note: All information contained in this document is subject to change without notice.

Copyright @ Alpha Bridge Technologies Private Limited

This document is ABTPL Public Information. ABTPL reserves the right to alter, update and otherwise change the information contained in the document from time to time. www.alphabridge.tech

