

AQSF28-T-01-PEL Datasheet

Alpha Bridge AQSF28-T-1-PEL Datasheet

AQSF28-T-01-PEL Datasheet

Features

- Compliant with SFF-8665/SFF-8679
- Compliant with IEEE 802.3bj
- 4 independent full-duplex channels
- Up to 25.78125 Gbps data rate per channel
- Up to 5m transmission
- Single 3.3V power supply
- Low insertion loss
- BER better than 10⁻¹⁵
- Operating temperature: -5 to +70°C
- RoHS compliant

Application

- 40G/100G Ethernet
- Infiniband QDR/EDR

General Product Characteristics

QSFP28 Copper Specifications				
Number of Lanes	4 Tx & Rx			
Channel Data Rate	25.78125 Gbps/channel			
Operating Case Temperature	-5 to +70°C			
Storage Temperature	-40 to +85°C			
Supply Voltage	3.3V nominal			
Electrical Interface	20 pin edge connector			
Management Interface	Serial,I ² C			

High Speed Characteristics

Parameter	Symbol	Min.	Мах.	Units	Note
Differential Impedance	RIN,P-P	90	110	Ω	
Insertion loss	SDD21		22.48	dB	At 12.8906 GHz
Differential Return Loss	SDD11		See 1	dB	At 0.05 to 4.1 GHz
	SDD22		See 2	dB	At 4.1 to 19 GHz
Common-mode to common- mode output return loss	SCC11	2		dB	At 0.2 to 19 GHz
	<i>\$2CC2</i>				

AQSF28-T-01-PEL Datasheet

Differential to common-mode	SCD11				
return loss	SCD22		See 3 See 4		At 0.01 to 12.89 GHz At 12.89 to 19 GHz
Differential to common Mode	SCD21		10		At 0.01 to 12.89 GHz
Conversion Loss			See 5	dB	At 12.89 to 15.7 GHz
			6.3		At 15.7 to 19 GHz
Channel Operating Margin	СОМ	3		dB	

Note:

1. Reflection Coefficient given by equation SDD11(dB) < 16.5 - 2 × SQRT(f), with f in GHz

2. Reflection Coefficient given by equation SDD11(dB) < $10.66 - 14 \times \log 10(f/5.5)$, with f in GHz

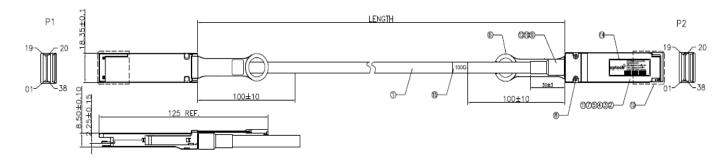
3. Reflection Coefficient given by equation SCD11(dB) < 22 - (20/25.78)*f, with f in GHz

4. Reflection Coefficient given by equation SCD11(dB) < 15 - (6/25.78)*f, with f in GHz

5. Reflection Coefficient given by equation SCD21(dB) < 27 - (29/22)*f, with f in GHz

Pin Description

Pin	Logic	Symbol	Description	Plug Sequenc	Notes
1		GND	Ground	1	1
2	CML-I	Tx2n	Transmitter Inverted Data Input 3		
3	CML-I	Tx2p	Transmitter Non-Inverted DataInput 3		
4		GND	Ground 1		1
5	CML-I	Tx4n	Transmitter Inverted Data Input	3	
6	CML-I	Tx4p	Transmitter Non-Inverted DataInput	3	
7		GND	Ground	1	1
8	LVTTL-I	ModSeIL	Module Select	3	
9	LVTTL-I	ResetL	Module Reset	3	
10		Vcc Rx	+3.3V Power Supply Receiver	2	
11	LVCMOSI/O	SCL	2-wire serial interface clock 3		2
12	LVCMOSI/O	SDA	2-wire serial interface data	3	2
13		GND	Ground 1		1
14	CML-O	Rx3p	Receiver Non-Inverted Data Output 3		
15	CML-0	Rx3n	Receiver Inverted Data Output 3		
16			Ground 1		1
17	CML-0	Rx1p	Receiver Non-Inverted Data Output	3	
18	CML-0	Rx1n	Receiver Inverted Data Output	3	
19		GND	Ground 1		1
20		GND	Ground	1	1
21	CML-O	Rx2n	Receiver Inverted Data Output 3		
22	CML-0	Rx2p	Receiver Non-Inverted Data Output	3	
23		GND	Ground 1		1
24	CML-O	Rx4n	Receiver Inverted Data Output	3	



25	CML-O	Rx4p	Receiver Non-Inverted Data Output 3		
26		GND	Ground 1		1
27	LVTTL-O	ModPrsL	Module Present	3	2
28	LVTTL-O	IntL	Interrupt	3	2
29		Vcc Tx	+3.3V Power Supply transmitter	2	
30		Vcc1	+3.3V Power Supply	2	
31	LVTTL-I	LPMode	Low Power Mode	3	
32		GND	Ground	1	1
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input	3	
34	CML-I	Tx3n	Transmitter Inverted Data Input	3	
35		GND	Ground	1	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	3	
37	CML-I	Tx1n	Transmitter Inverted Data Input	3	
38		GND	Ground	1	1

1. GND is the symbol for signal and supply (power) common for the module. All are common within the module and all modulevoltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane.

2. Vcc Rx, Vcc1 and Vcc Tx shall be applied concurrently. Requirements defined for the host side of the Host Edge Card Connector are listed in SFF-8679 Table5-6. Vcc Rx Vcc1 and Vcc Tx may be internally connected within the module in anycombination. The connector pins are each rated for a maximum current of 1000 mA.

Dimensions

Ordering Information

Part Number	Length (M)	AWG	Voltage	Temperature
AQSF28-T-01-PEL	1	30	3.3V	0 [°] C to 70 [°] C

Note: All information contained in this document is subject to change without notice.

Copyright @ Alpha Bridge Technologies Private Limited

This document is ABTPL Public Information. ABTPL reserves the right to alter, update and otherwise change the information contained in the document from time to time. www.alphabridge.tech

