Chapter-43

OSPF

Contents

Chapter-43 OSPF

43.1 OSPF Overview	3
43.2 Configure OSPF	4
43.2.1 OSPF Configuration List	4
43.2.2 Enable OSPF	4
43.2.3 Configure OSPF Parameter	5
43.2.4 Configure OSPF Interface	6
43.2.5 Configure OSPF Area	10

Chapter-43 OSPF

43.1 OSPF Overview

Open Shortest Path First (OSPF) is an interior routing protocol, which is developed by IETF based on the link state detection and shortest path first technologies. In an IP network, OSPF dynamically discovers and advertise routes by collecting and transmitting the link states of autonomous systems (ASs). It supports interface-based packet authentication for purposes of route calculation security and employs IP multicast to send and receive packets.

Each OSPF router maintains a database that describes the topological structure of an AS. The database is a collection of link-state advertisements (LSAs) of all the routers. Every router always broadcasts the local state information across the entire AS. If two or more routers exist in a multi-access network, a designated router (DR) and a backup designated router (BDR) must be elected. The DR is responsible for broadcasting the LSAs of the network. With a DR, a multi-address access network may require less neighbor relationships to be established between routers. OSPF allows an AS to be divided into areas, between which routing information is further abstracted. As a result, smaller network bandwidth will be occupied.

OSPF uses four types of routes, which are listed in order of priority as follows:

Intra-area routes

Inter-area routes

Type 1 external routes

Type 2 external routes

Intra-area and inter-area routes describe the network structure of an AS, while external routes depict how routes are distributed to destinations outside an AS. Generally, type 1 external routes are based on the information imported by OSPF from other interior routing protocols and comparable to OSPF routes in routing cost; type 2 external routes are based on the information imported by OSPF from exterior routing protocols and the information imported by OSPF from exterior routing protocols and the costs of such routes are far greater than those of OSPF routes. Therefore, route calculation only takes the external costs into consideration.

3

Based on the link state database (LSDB), each router builds a shortest path tree with itself as the root, which presents the routes to every node in an AS. An external route emerges as a leaf node and can also be marked by the router that broadcasts the external route so that additional information about an AS is recorded.

All the OSPF areas are connected to the backbone area, which is identified by 0.0.0.0. OSPF areas must be logically continuous. To achieve this end, virtual connection is introduced to the backbone area to ensure the logical connectivity of areas even if they are physically separated.

All the routers in an area must accept the parameter settings of the area. Therefore, the configuration of routers in the same area must be performed in consideration of the parameter settings of the area. A configuration error may lead to the failure of information transfer between adjacent routers and even routing failures or routing loops.

43.2 Configure OSPF

Configuration Task	Description	Detailed
		Configuration
EnableOSPF	Required	43.2.2
ConfigureOSPF Parameter	Required	43.2.3
Configure OSPF Interface	Required	43.2.4
Configure OSPF Area	Required	43.2.5

43.2.1 OSPF Configuration List

43.2.2 Enable OSPF

Operatio	n		Command	Remarks
Enter	the	global	system-view	
configura		2		

Enters global configuration mode.	router ospf	
Enters global configuration mode.	undo router ospf	

43.2.3 Configure OSPF Parameter

OSPF divides an AS into different areas, based on which routers are logically classified into different groups. Area border routers (ABRs) may belong to different areas. A network segment belongs to only one area, that is, the homing area of an OSPF interface must be specified. An area is identified by an area ID. Routes between areas are transmitted by ABRs.

In addition, all the routers in an area must unanimously accept the parameter settings of the area. Therefore, the configuration of routers in the same area must be performed in consideration of the parameter settings of the area. A configuration error may lead to the failure of information transfer between adjacent routers and even routing failures or routing loops.

Operation	Command	Remarks
Enter the global configuration mode	system-view	
Enters global configuration mode.	router ospf	
Enters global configuration mode.	router id router-id	
Enters global configuration mode.	undo router id	
Runs the command in OSPF configuration mode.	network ipaddress wildcard-mask area area-id	

Runs the command in OSPF configuration mode.	undo network ipaddress wildcard-mask area area-id	
Configures the authentication type for an area.	area area-id authentication [message-digest]	
Restores the authentication type of an interface to no authentication.	undo area area-id authentication	

43.2.4 Configure OSPF Interface

OSPF calculates routes based on the topological structure of the network adjacent to the local router. Each router describes the topology of its adjacent network and transmits it to the other routers. According to the link layer protocol, OSPF classifies networks into the following four types:

Broadcast networks: When Ethernet or FDDI is used as the link layer protocol, OSPF considers that the network type is broadcast by default.

Non Broadcast MultiAccess (NBMA) networks: When ATM is used as the link layer protocol, OSPF considers that the network type is NBMA by default.

Point-to-Multipoint networks: This network type will be considered as default in no case. It is always a substitute of other network types through forcible change. An NBMA network that is not fully meshed is often changed to a point-to-multipoint network.

Point-to-Point networks: When PPP, LAPB, or POS is used as the link layer protocol, OSPF considers that the network type is Point-to-Point by default.

The ATM network is a typical NBMA network. A polling interval can be configured to specify the interval of sending Hello packets before a router establishes a neighbor relationship with its neighboring router.

On a broadcast network incapable of multi-address access, you can configure the interface type to nonbroadcast.

If some routers are not directly reachable on an NBMA network, you can configure the interface type to point-to-multipoint.

If a router has only one peer router on an NBMA network, you can set the interface type to point-to-point.

The differences between an NBMA network and a point-to-multipoint network are as follows:

In OSPF, an NBMA network refers to a non-broadcast multi-access network that is fully meshed. A point-to-multipoint network may not be fully meshed.

A DR and a BDR must be elected on an NBMA network but are not involved on a

point-to-multipoint network.

NBMA is a default network type. For example, if the link layer protocol is ATM, OSPF considers that the network type is NBMA by default no matter whether the network is fully meshed. Point-to-multipoint is not a default network type. No link layer protocol is viewed as a point-to-multipoint protocol. You can use this network type through a forcible change. An

NBMA network that is not fully meshed is often changed to a point-to-multipoint network.

On an NBMA network, packets are transmitted in unicast mode, which requires you to configure neighbor relationship manually. On a point-to-multipoint network, packets are transmitted in multicast mode.

An Ethernet Switch uses Ethernet as the link layer protocol, so OSPF regards that the network type is broadcast. Do not change the network type of an Ethernet Switch at discretion.

Operation		Command	Remarks
Enter the configuration r	5	system-view	

	r	
Enter the VLAN-interface or		
Supervlan-interface	interface { vlan-interface	
configuration	supervlan-interface } <i>vlan-id</i>	
mode		
mode		
Sets the network type of an	ip ospf network { broadcast non-	
	broadcast	
interface.	point-to-multipoint point-to-	
	point }	
	point y	
Restores the network type	undo ip ospf network	
of an interface to the default		
value.		
Sets the cost of sending	in confront cost	
packets through a VLAN		
interface.		
Restores the packet	undo ip ospf cost	
sending cost of a VLAN		
interface to the default		
value.		
Sets the priority of an	in cenf priority value	
	ιμ ορμι μποπιεγ ναιμε	
interface in DR election.		
Restores the default priority	undo ip ospf priority	
of an interface.		
Sets the interval of conding	ip ospf hello-interval seconds	
	וא סשאי וופווט-ווונפו אמו שבכטוועש	
interface.		
Restores the interval of	undo ip ospf hello-interval	
sending Hello packets for		

an interface to the default		
value.		
Sets the timeout time of the	ip ospf dead-interval seconds	
neighboring router.		
Restores the timeout time	undo ip ospf dead-interval	
of the neighboring router to		
the default		

value.		
Sets the interval of LSA retransmission between two adjacent routers.	ip ospf retransmit-interval seconds	
Restores the interval of LSA retransmission between two adjacent routers to the default value.	undo ip ospf retransmit-interval	
Sets the time for sending a link state update packet.	ip ospf transmit-delay seconds	
Restores the time for sending a link state update packet to the default value.	undo ip ospf transmit-delay	
Sets the authentication type	<pre>ip ospf authentication [null ipaddress message-digest [ipaddress]]</pre>	
Restores the authentication type	undo ip ospf authentication [ipaddress]	

Sets a password for plaintext authentication.	ipospfauthentication-keypassword[ipaddress]
Disables plaintext authentication.	undo ip ospf authentication-key [<i>ipaddress</i>]
Sets a password for MD5	ip ospf message-digest-key <i>key-</i> <i>id</i> md5
authentication.	key [ipaddress]
Disables MD5 authentication.	undo ip ospf message-digest- key key-id [ipaddress]

43.2.5 Configure OSPF Area

A stub area is a special LSA area in which ABRs do not distribute the external routes they have received. In stub areas, both the size of routing tables and the amount of the routing information are drastically reduced.

Any area that meets certain conditions can be configured into a stub area. Generally, a stub area is located at the border of an AS. It may be a non-backbone area with only one ABR or a non-backbone area with multiple ABRs between which no virtual connection is configured.

To make a stub area reachable for other ASs, the ABR in the stub area generates a default route (0.0.0.0) and advertises it to non-ABR routers in this area.

When Configure a stub area, note the following points:

-A backbone area cannot be a stub area and a virtual connection is not allowed in a stub

area.

-All the routers in a stub area must be configured to indicate that they are located in a stub

area.

-No ASBR is allowed in a stub area, that is, routes from outside the AS where the stub area resides cannot be advertised within the stub area.

Operation	Command	Remarks
Enter the global configuration mode	system-view	
Enters global configuration mode.	router ospf	
Configures a stub area.	area area-id stub [no-summary]	
Cancels the stub area configuration.	undo area area-id stub [no- summary]	
Configures the cost of the default route to a stub area.	area area-id default-cost cost	
Cancels the cost configuration for the default route to a stub area.	undo area area-id default-cost	
Configures an NSSA area.	area area-id nssa [no-summary]	
Cancels the NSSA area configuration.	undo area area-id nssa [no- summary]	
Configures the cost of the default route to an NSSA area.	area area-id default-cost cost	
Cancels the cost configuration for the default route to an NSSA area.	undo area area-id default-cost	

ConfiguresrouteaggregationinanoSPFarea.Removes routeaggregationinanOSPFarea.	areaarea-idrangeip-address/mask-length[advertise]notadvertise][substitutep-address/mask-length]	
Creates and configures a virtual connection.	area area-id virtual-link router-id [{ hello-interval seconds retransmit- interval seconds transmit-delay seconds dead- interval seconds { authentication-key password message-digest-key keyid md5 key } } *]	
Cancels a virtual connection.	undo area area-id virtual-link router-id	
Imports routes of other protocols into OSPF.	redistribute { babel bgp connected isis kernel rip static } [metric metric-value] [metric-type { 1 2 }] [route- map map-name]	
Disables the import of routes of other protocols into OSPF.	undo redistribute { babel bgp connected isis kernel rip static } [metric metric] [metric-type { 1 2 }] [route- map	

	map-name]	
Imports the default route to OSPF.	default-information originate [always]	
	[metric metric-value] [metric- type { 1 2 }]	
	[route-map map-name]	
Disables the import of the default route.	undo default-information originate	
	[always] [metric metric-value] [metric-type	
	{ 1 2 }] [route-map map-name]	
Configures a default metric value for reception of external routes.	default-metric metric-value	
Cancels the default metric value configuration for reception of external routes.	undo default-metric	
Configures distribute-list	distribute-list { ip-acl-name ip- acl-number } out { babel bgp connected isis kernel rip static }	
Delete distribute-list	undo distribute-list { ip-acl- name ip-acl-number } out { babel bgp connected	
	isis kernel rip static }	

Enter the VLAN-interface or	interface { vlan-interface
Supervlan-interface	supervlan-interface } vlan-id
configuration	
mode	
Enables BFD for link state	ip ospf bfd
monitoring.	
Disables BFD.	undo ip ospf bfd