

Features

- Compliant with 40G Ethernet IEEE802.3ba and 40GBASE-ER4 Standard
- QSFP+ MSA compliant
- Compliant with QDR/DDR Infiniband data rates
- Up to 11.2Gb/s data rate per wavelength
- 4 CWDM lanes MUX/DEMUX design
- Up to 40km transmission on single mode fiber (SMF)
- 18.5dB link insertion loss budget
 - Commercial case temperature: 0°C to 70°C
 - Maximum power consumption 3.5W
 - LC duplex connector
 - RoHS compliant

Applications

- 40GBASE-ER4 Ethernet Links
- Infini band QDR and DDR interconnects
- Client-side 40G Telecom connections

Description

This product is a transceiver module designed for 40km optical communication applications. The design is compliant to 40GBASE-ER4 of the IEEE P802.3ba standard. The module converts 4 inputs channels (ch) of 10Gb/s electrical data to 4 CWDM optical signals, and multiplexes them into a single channel for 40Gb/s optical transmission. Reversely, on the receiver side, the module optically demultiplexes a 40Gb/s input into 4 CWDM channels signals, and converts them to 4 channel output electrical data.

The central wavelengths of the 4 CWDM channels are 1271, 1291, 1311 and 1331nm as members of the CWDM wavelength grid defined in ITU-T G.694.2. It contains a duplex LC connector for the optical interface and a 148-pin connector for the electrical interface. To minimize the optical dispersion in the long-haul system, single-mode (SMF) has to be applied in this module.

The product is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP+ Multi-Source Agreement (MSA). It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference.

Absolute Maximum Ratings

Parameter	Symbol	Min	Тур.	Мах	Unit
Storage Ambient Temperature	T stg	-40	85	°C	
Operating Case Temperature	Тор	0	70	°C	
Power Supply Voltage	Vcc	-0.5	3.6	V	
Relative Humidity (non- condensation)	RH	0	85	%	
Damaged Threshold , each Lane	THd	3.8		dBm	

Recommended Operating Conditions

Parameter	Symbol	Min	Тур.	Мах	Unit
Operating Case Temperature	Тор	0		70	°C
Power Supply Voltage	Vcc	3.135	3.3	3.465	V
Data Rate, each Lane			10.3125	11.2	Gb/s
Control Input Voltage High		2		Vcc	V
Control Input Voltage Low		0		0.8	V
Link Distance with G.652	D			40	km

Diagnostics Monitoring

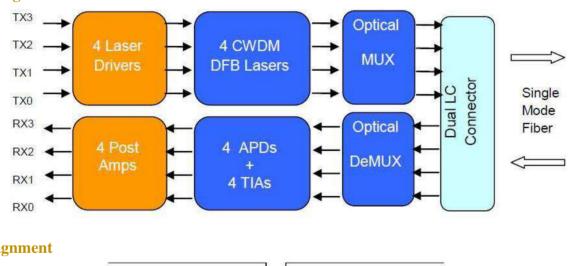
Parameter	Symbol	Accuracy	Units	Notes
Temperature monitor absolute error	DMI_Temp	±3	°C Over operating	
	Divii_remp		temperature range	
Supply yeltage meniter sheety to error		±0.1	Over full operating	
Supply voltage monitor absolute error	DMI_VCC	10.1	V range	
Channel RX power monitor absolute error	DMI_RX_Ch	±2	dB 1	
Channel Bias current monitor	DMI_Ibias_Ch	±10%	mA	
Channel TX power monitor absolute error	DMI_TX_Ch	±2	dB 1	

Note:

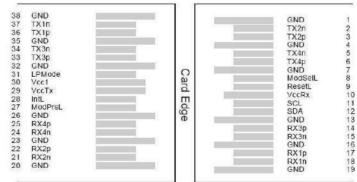
1. Due to measurement accuracy of different single mode fibers, there could be an additional +/-1 dB fluctuation, or a

+/- 3 dB total accuracy.

Optical Characteristics


Parameter	Symbol	Min	Туре	Max	Unit	Notes
	LO	1264.5	1271	1277.5	nm	
Wavelength Assignment	L1	1284.5	1291	1297.5	nm	
Wavelength Assignment	L2	1304.5	1311	1317.5	nm	
	L3	1324.5	1331	1337.5	nm	
		Transmitte	er 👘			
Side Mode Suppression Ratio	SMSR	30			dB	
Total Average Launch Power	Ρτ			10.5	dBm	
Average Launch Power, each lane	PAVG	-2.7		4.5	dBm	
Optical Modulation Amplitude (OMA) each	POMA	0.3		5	dBm	1
Difference in Launch Power between any Two Lanes (OMA)	Ptx,diff			4.7	dB	
Launch Power in OMA minus						
Transmitter and Dispersion		-0.5			dBm	
Penalty (TDP) each lane						
TDP, each lane	TDP			2.6	dB	
Extinction Ratio	ER	5.5			dB	
Relative Intensity Noise	RIN			-128	dB/Hz	12dB reflection
Optical Return Loss Tolerance	TOL			20	dB	
Transmitter Reflectance	Rτ			-12	dB	
Transmitter Eye Mask Definition (X1, X2, X3, Y1, Y2, Y3)		{0.25,0.4,0.45,	0.25,0.28,0.4	}		
Average Launch Power OFF Transmitter each lane	Poff			-30	dBm	
		Receiver				
Damage Threshold, each lane	THa	3.8			dBm	2
Average Receive Power, each lane		-21.2		-4.5	dBm	
Receiver Reflectance	R R			-26	dB	
Receiver Power (OMA) each lane				4	dBm	
Receiver Sensitivity (OMA) each lane	SEN			-19	dBm	

			-16.8	dBm	3
			-10.5	ubiii	5
Prx,diff			7	dB	
LOSA	-35			dBm	
LOSD			-20	dBm	
LOSH	0.5			dB	
Fc			12.3	GHz	
	LOSA LOSD LOSH	LOSA -35 LOSD LOSH 0.5	LOSA -35 LOSD	LOSA -35 -20 LOSD -20 -20 LOSH 0.5 -20	Prx,diff7dBLOSA-35dBmLOSD-20dBmLOSH0.5dB


Notes:

- 1. Even if the TDP < 0.8 dB, the OMA min must exceed the minimum value specified here.
- 2. The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power.
- 3. Measured with conformance test signal at receiver input for BER = 1×10^{-12} .
- 4. Vertical eye closure penalty and stressed eye jitter are test conditions for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

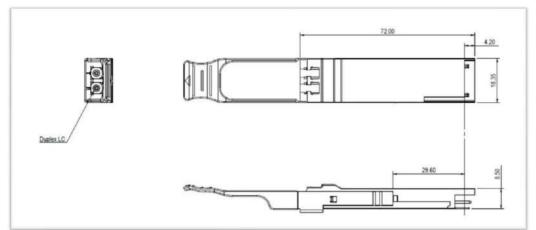
Block Diagram of Transceiver

Pin Assignment

Top Side Viewed from Top

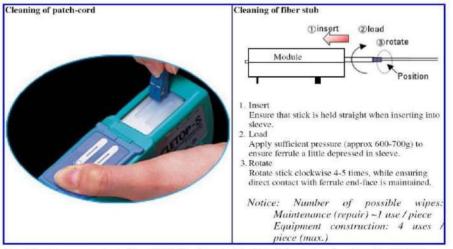
Bottom Side Viewed from Bottom

PIN	Logic	Symbol	Description	Note
1		GND	Ground	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	


3	CML-I	Tx2p	Transmitter Non-Inverted Data output	
4		GND	Ground	1
5	CML-I	Tx4n	Transmitter inverted Data Input	
6	CML-I	Tx4p	Transmitter Non-Inverted Data output	
7		GND	Ground	1
8	LVTLL-I	ModSelL	Module Select	
9	LVTLL-I	ResetL	Module Reset	
10		VccRx	+3.3V Power Supply Receiver	2
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock	
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data	
13		GNC	Ground	
14	CML-O	Rx3p	Receiver Non-Inverted Data output	
15	CML-O	Rx3n	Receiver Inverted Data output	
16		GND	Ground	1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	
18	CML-O	Rx1n	Receiver Inverted Data Output	
19		GND	Ground	1
20		GND	Ground	1
21	CML-O	Rx2n	Receiver Inverted Data output	
22	CML-O	Rx2p	Receiver Non-Inverted Data output	
23		GND	Ground	1
24	CML-O	Rx4n	Receiver Inverted Data output	
25	CML-O	Rx4p	Receiver Non-Inverted Data output	
26		GND	Ground	1
27	LVTTL-0	ModPrsL	Module Present	
28	LVTTL-0	IntL	Interrupt	
29		VccTx	+3.3V Power Supply transmitter	2
30		Vcc1	+3.3V Power Supply	2
31	LVTTL-I	LPMode	Low Power Mode	
32		GND	Ground	
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input	
34	CML-I	Tx3n	Transmitter Inverted Data Output	
35		GND	Ground	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	
37	CML-I	Tx1n	Transmitter Inverted Data Output	
38		GND	Ground	1

Notes:

- 1. GND is the symbol for signal and supply (power) common for QSFP+ modules. All are common within the QSFP+ module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground plane.
- 2. VccRx, Vcc1 and VccTx are the receiving and transmission power suppliers and shall be applied concurrently. Vcc Rx, Vcc1 and Vcc Tx may be internally connected within the QSFP+ transceiver module in any combination. The connector pins are each rated for a maximum current of 500mA.



Dimensions

Optical Receptacle Cleaning Recommendations:

All fiber stubs inside the receptacle portions were cleaned before shipment. In the event of contamination of the optical ports, the recommended cleaning process is the use of forced nitrogen. If contamination is thought to have remained, the optical ports can be cleaned using a NTT international Cletop[®] stick type and HFE7100 cleaning fluid. Before the mating of patch-cord, the fiber end should be cleaned up by using Cletop[®] cleaning cassette.

Note: The pictures were extracted from NTT-ME website. And the Cletop® is a trademark registered by NTT-ME

Ordering Information

Model Number	Part Number	Voltage	Temperature
AQSFP-40G-ER4	OPCS-S40-13-CB	3.3V	0°C to 70 °C

Note: All information contained in this document is subject to change without notice

Copyright @ Alpha Bridge Technologies Private Limited

This document is ABTPL Public Information. ABTPL reserves the right to alter, update and otherwise change the information contained in the document from time to time. <u>www.alphabridge.tech</u>

